- Indico style
- Indico style - inline minutes
- Indico style - numbered
- Indico style - numbered + minutes
- Indico Weeks View
Neutrini and nuclei, challenges and opportunities for nuclear theory
Accurate predictions of neutrino-nucleus interactions are essential to long-baseline neutrino-oscillation programs. Current- and next-generation experiments are sensitive to a broad range of energy, characterized by different reaction mechanisms involving both nucleon and nuclear excitations. Achieving a comprehensive description within a unified framework is a formidable nuclear- and particle-theory challenge. Nuclear effective field theories (EFTs), coupled to accurate nuclear many-body methods, allow for a consistent description of nuclear structure and low-energy electroweak observables. This workshop aims at assessing how nuclear EFTs can be extended to account for processes characterized by momentum and energy scales larger than the pion mass. Specific open problems, such as: how to properly include single-nucleon excitations, relativistic effects, and inelasticity, will be addressed. To achieve this goal, we bring together nuclear and hadron theorists and arrange for specialized and focused talks, best suited to spur discussions and collaborations.
Main Topics:
Current- and next- generation neutrino-oscillation experiments require nuclear physics calculations of structure and electroweak properties of atomic nuclei with quantified theoretical uncertainties. Nuclear effective field theories (EFTs) allow for a systematic derivation of the nuclear hamiltonian and many-body currents, both required to describe neutrino's interactions with nuclei. Despite this success, there are key points that remain to be determined and that will be the main focus of our workshop: