June 28 - July 1, 2021 NPES workshop

Three-body resonances and two-nucleon correlations

Jesús Casal

MSCA fellow Universidad de Sevilla, Spain

J.C. [PRC 97 (2018) 034613] arXiv:1801.01280 \Rightarrow using stabilization approach; pseudostates

The link between dineutron or diproton configuration in the initial state and sequential or prompt decay is not clear, especially for excited states

$$^{16}\mathrm{Be}\;(^{14}\mathrm{Be}+n+n)$$

Known 2n emitter Spyrou [PRL 108 (2012) 102501]

Proton removal from 17 B on Be target @ 53 MeV/u (MSU)

new RIKEN data - B. Monteagudo, F. M. Marqués (LPC Caen) \Rightarrow previous talk!

Hyperspherical *R*-matrix method \Rightarrow "true" continuum (eigenphases) ¹⁶Be

 $\begin{array}{l} \mathbf{0^{+} \ res.} \ E_{\mathbf{3}B} = 1.35 \ \mathrm{MeV}, \ \Gamma = 0.17 \ \mathrm{MeV} \\ \Rightarrow \ \mathrm{clear} \ 2n \ \mathrm{configuration} \\ 80\% \ l_{nn} = 0 \ \mathrm{waves} \end{array}$

S. Wang and W. Nazarewicz [PRL 126 (2021) 034605]

Time-dependent approach ⁶Be, ⁶He'

 \Rightarrow dynamics of two-nucleon emission at long times and large distances

(talk by S. Wang on 30/06)

Other theoretical works:

- L. V. Grigorenko et al.; ²⁶O decay [PRL 111 (2013) 042501] ⁶Be decay [PRC 80 (2009) 034602]
- > R. Álvarez-Rodríguez et al.; 3body-decays [PRL 100 (2008) 192501]
- ... several different techniques!

Three-body description: Jacobi and hyperspherical coordinates

$$\Psi^{j\mu}(\rho,\Omega) = \rho^{-5/2} \sum_{\beta} \chi^{j}_{\beta}(\rho) \mathcal{Y}^{j\mu}_{\beta}(\Omega)$$

$$ho = \sqrt{x^2 + y^2}$$
, $\tan \alpha = x/y$

 $\mathcal{Y}^{j\mu}_{\beta}(\Omega)$ expanded in hyperspherical harmonics; $\beta \equiv \{K, l_x, l_y, l, S\}_j$

$$\left[\frac{-\hbar^2}{2m}\left(\frac{d^2}{d\rho^2} - \frac{15/4 + K(K+4)}{\rho^2}\right) - \varepsilon\right]\chi^j_\beta(\rho) + \sum_{\beta'} V^{j\mu}_{\beta'\beta}(\rho)\chi^j_{\beta'}(\rho) = 0$$

> three-body barrier determined by hypermomentum K (even if K = 0!!) > $V^{j\mu}_{\beta'\beta}(\rho)$: binary potentials + three-body force Pseudostate method \Rightarrow expand $\chi^{\mathcal{J}}_{\beta}(\rho)$ in a discrete basis (diagonalize H)

•
$$\varepsilon_n < 0$$
 bound states

• $\varepsilon_n > 0$ discretized continuum

 $U_{i\beta}(\rho)$: Analytical Transformed Harmonic Oscillator (THO) basis \Rightarrow enables high concentration of discretized states close to threshold

 $\chi^{j}_{\beta n}(\rho) = \sum_{i=0}^{N} C^{j}_{i\beta n} U_{i\beta}(\rho)$

(e.g., J.C. et al. [PRC 88 (2013) 014327])

Identifying and characterizing few-body resonances: A new approach

Ex: ⁶He $(\alpha + n + n)$ non-res. 1⁻ 2⁺ resonance

$$\widehat{H}|n\rangle = \varepsilon_n|n\rangle$$

mix res. and non-res.

[J.C., J. Gómez-Camacho, PRC 99 (2019) 014604]

Identifying and characterizing few-body resonances: A new approach

 \Rightarrow Diagonalize a **resonance operator** in a PS basis $\{|n\rangle\}$

$$\widehat{M} = \widehat{H}^{-1/2} \widehat{V} \widehat{H}^{-1/2}, \qquad \widehat{M} |\psi\rangle = m |\psi\rangle; \qquad |\psi\rangle = \sum_{n} \mathcal{C}_{n} |n\rangle$$

- It separates resonant states, which are strongly localized, from nonresonant continuum states, which are spatially spread.
- $\bullet\,$ The expansion in terms of $|n\rangle$ allows to build energy distributions.

[J.C., J. Gómez-Camacho, PRC 99 (2019) 014604]

Identifying and characterizing few-body resonances: A new approach

 \Rightarrow Diagonalize a **resonance operator** in a PS basis $\{|n\rangle\}$

$$\widehat{M} = \widehat{H}^{-1/2} \widehat{V} \widehat{H}^{-1/2}, \qquad \widehat{M} |\psi\rangle = m |\psi\rangle; \qquad |\psi\rangle = \sum_{n} \mathcal{C}_{n} |n\rangle$$

- It separates resonant states, which are strongly localized, from nonresonant continuum states, which are spatially spread.
- The expansion in terms of |n
 angle allows to build energy distributions.

[J.C., J. Gómez-Camacho, PRC 99 (2019) 014604]

Resonance parameters 16 Be $\varepsilon_r(0^+) = 1.35$ MeV $\Gamma(0^+) = 0.16$ MeV

width in good agreement with "true" 3b continuum (Lovell et al.)

Resonance parameters ${}^{16}\text{Be}$ $\varepsilon_r(0^+) = 1.35 \text{ MeV}$ $\Gamma(0^+) = 0.16 \text{ MeV}$

width in good agreement with "true" 3b continuum (Lovell et al.)

 $\begin{array}{l} \mbox{Resonance parameters} \ ^{16}\mbox{Be}\\ \varepsilon_r(0^+) = 1.35\ \mbox{MeV}\\ \Gamma(0^+) = 0.16\ \mbox{MeV} \end{array}$

width in good agreement with "true" 3b continuum (Lovell et al.)

New RIKEN data resolve two peaks! (talk by B. Monteagudo) 1st excited state observed for the first time; likely 2^+

New RIKEN data resolve two peaks! (talk by B. Monteagudo) 1st excited state observed for the first time; likely 2⁺

Is there a signature of these dineutron correlations in the decay?

Resonance WF obtained as eigenstate of $\widehat{M},$ evolved in time:

$$\phi_{\beta}(\rho,t) \longrightarrow \left(\mathcal{A}_{\beta}^{+}H_{K}^{+}(k_{c}\rho) + \mathcal{A}_{\beta}^{-}H_{K}^{-}(k_{c}\rho)\right)\exp(-\Gamma t/2 - i\varepsilon_{r}t)$$

> Asymptotically, only outgoing waves $\mathcal{A}^+_{\beta}H^+_{K}(k_c\rho)$ survive This asymptotic behavior allows to build E_{nn} relative energy distributions (in progress)

Is there a signature of these dineutron correlations in the decay?

Resonance WF obtained as eigenstate of $\widehat{M},$ evolved in time:

$$\phi_{\beta}(\rho,t) \longrightarrow \left(\mathcal{A}_{\beta}^{+}H_{K}^{+}(k_{c}\rho) + \mathcal{A}_{\beta}^{-}H_{K}^{-}(k_{c}\rho)\right)\exp(-\Gamma t/2 - i\varepsilon_{r}t)$$

> Asymptotically, only outgoing waves $\mathcal{A}^+_{\beta}H^+_K(k_c\rho)$ survive This asymptotic behavior allows to build E_{nn} relative energy distributions (in progress)

more pronounced low- E_{nn} peak for the 2⁺!

$$P(\alpha) = N \sum_{l_x, l_y, l, S} \sum_{K, K'} \mathcal{A}^+_\beta (\mathcal{A}^+_{\beta'})^* (-i)^{K-K'} \varphi^{l_x, l_y}_K(\alpha) \varphi^{l_x, l_y}_{K'}(\alpha),$$

• $\varphi_K^{l_x,l_y}(\alpha) \propto$ Jacobi polynomials in $\cos(2\alpha)$ of order $n = \frac{K - l_x - l_y}{2}$

• hyperangle $\alpha \longrightarrow$ relative E_{nn}

 \mathcal{A}_{β}^{+} for the lowest possible K values compete with initial w.f. weights consistent with Wang & Nazarewicz [PRL 126 (2021) 034605]

> For ¹⁶Be, K = 4 mostly. Asymptotically, K = 2 and 0 compete

$$\succ j^{\pi} = 0^+ \Rightarrow K_{min} = 0; \quad j^{\pi} = 2^+ \Rightarrow K_{min} = 2$$

 $\Rightarrow P(\varepsilon_{nn})$ for the 2⁺ state is more asymmetric (no K = 0 terms)

J. Casal ECT^{*}, NPES workshop

Summary and outlook

- The continuum of three-body systems, such as 2n emitters, can be described using pseudostates within the hyperspherical framework.
- \blacksquare Resonance identification method: Eigenstates of $\widehat{M}=\widehat{H}^{-1/2}\widehat{V}\widehat{H}^{-1/2}$
- ➡ ¹⁶Be (¹⁴Be + n + n): 0⁺ g.s. resonance and excited 2⁺
 Decay properties from time evolution (resonance amplitudes).
 ⇒ distinct nn configurations
- ➡ E_{nn} decay-energy distributions: Matching with asymptotics (H_K^{\pm}) Preliminary results for ¹⁶Be; reasonable agreement with data \Rightarrow shape related to initial wf, $K_{min}(j^{\pi})$ and K-interference
- In progress:
 - sensitivity to matching conditions; sequential or direct?;
 - sensitivity to nn interaction strength; (see talk by S. Wang)
 - Pauli / core excitation effects on nn correlations;
 - application to other systems (⁶He, ...); proton decays;

Collaborators:

- J. Gómez-Camacho 1,2 , B. Monteagudo 3 , F. M. Marqués 4 , A. M. Moro 1
 - ¹: Universidad de Sevilla
 - ²: Centro Nacional de Aceleradores (CNA)
 - ³: NSCL/FRIB
 - ⁴: LPC Caen

Funding (theory):

MSCA - IF - 2020

Grant agreement 101023609

"Una manera de hacer Europa"

Project No.

FIS2017-88410-P

Horizon 2020

Grant agreement 654002