

Theory Alliance Facility for rare isotope beams

Halo-EFT analyses of knockout reactions of $^{11}\mathrm{Be}$ and $^{15}\mathrm{C}$

Chloë Hebborn and Pierre Capel

June, 30 2021

Chloë Hebborn

ECT* workshop 2021

June, 30 2021 1 / 13

Introduction

In the light neutron-rich sector :

Halo nuclei exhibit a very large matter radius Compact core + one loosely-bound neutrons

Ex :¹¹Be = ¹⁰Be + n $S_n = 503 \text{ keV}$ ¹⁵C = ¹⁴C + n $S_n = 1218 \text{ keV}$

Short-lived ($\tau_{^{11}Be} \sim 13 \text{ s}$) : studied through reaction processes

One-neutron knockout : $P(\equiv c+n) + T \rightarrow c+X$

 \Rightarrow high statistics since the neutron is not detected in coincidence !

Knockout reactions a useful probe

KO Reactions at > 60A MeV

Sudden approximation + Uncertainty principle

 \rightarrow width linked to the nucleus size

Reaction model and eikonal approximation

Three-body model of reaction

- *c*-*n* interaction : effective interaction V^{cn}
- P-T interactions : optical potentials V_{cT} and V_{nT}

 $\sigma_{th} = \sum_{i} SF_i \times \sigma_{ko}^{sp,i} \qquad SF_i \to \text{occupancy of a s.p. orbital } i$

KO cross sections $\sigma_{ko}^{sp,i}$ = Diffractive breakup $\sigma_{bu}^{sp,i}$ + Stripping $\sigma_{str}^{sp,i}$

 $\sigma_{bu}^{sp,i} \Rightarrow \text{Dynamical eik. approximation} : ① [Baye, Capel, and Goldstein, PRL 95, 082502 (2005)]$ $\sigma_{str}^{sp,i} \Rightarrow \text{Usual eik. approximation} : ① + ② [Glauber, High energy collision theory, (1959)]$

① Eikonal approximation ② Adiabatic approximation

Halo-EFT model of the projectile

Halo-EFT model of projectile : uses the separation of scale to expand low-energy behaviour with $R_{core} \ll R_{halo}$ [H.-W. Hammer *et al.*, JPG **44**, 103002 (2017)]

 \Rightarrow *c*-*n* effective potential

At NLO :
$$V_{lJ}^{cn}(r) = V_{lJ}^{(0)} e^{-\frac{r^2}{2r_0^2}} + V_{lJ}^{(2)} r^2 e^{-\frac{r^2}{2r_0^2}}$$

with r_0 the scale of the short-range physics neglected in the model

We constrain $V^{(0)}$ and $V^{(2)}$ in s and p waves

- Experimental energies of $1/2^+$ ground state and excited state
- Asymptotic Normalization Constant (ANC) from NCSMC calculations (¹¹Be) [Calci *et al.* PRL 117, 242501 (2016)] transfer data (¹⁵C) [Moschini, Yang, and Capel PRC 100, 044615 (2019)]

Sensitivity of knockout of halo nuclei

[Hebborn and Capel, Phys. Rev. C 100, 054607 (2019)]

Reference calculation : ANC=0.786 fm^{-1/2} [Calci *et al.* PRL **117**, 242501 (2016)] Diffractive breakup > stripping

Sensitivity of knockout of halo nuclei

[Hebborn and Capel, Phys. Rev. C 100, 054607 (2019)]

 $\begin{array}{l} \mbox{Reference calculation: ANC=0.786 fm} \mbox{ fm}^{-1/2} \ \mbox{[Calci et al. PRL 117, 242501 (2016)]} \\ \mbox{Diffractive breakup} > \mbox{stripping} \end{array}$

Same ANC but SF=0.9 : same cross sections \rightarrow no sensitivity to SF

KO of halo nuclei sensitive only to the asymptotics !

 \Rightarrow Possibility to extract an ANC

ECT* workshop 2021

How does it compare to experimental data?

[Exp.: Aumann et al. PRL 84, 35 (2000); Tostevin et al. PRC 66, 024607 (2002); Th.: Hebborn and Capel, arXiv :2105.04490]

Eikonal lacks asymmetry due to the adiabatic approximation $\sigma_{bu}^{sp,i}$ computed with the DEA \rightarrow Asymmetry well reproduced

How does it compare to experimental data?

[Exp.: Aumann et al. PRL 84, 35 (2000); Tostevin et al. PRC 66, 024607 (2002); Th.: Hebborn and Capel, arXiv :2105.04490]

Eikonal lacks asymmetry due to the adiabatic approximation $\sigma_{bu}^{sp,i}$ computed with the DEA \rightarrow Asymmetry well reproduced Sensitivity to optical potentials : ¹¹Be ANC² = 0.62±0.06±0.09 fm⁻¹ ¹⁵C ANC² = 1.57±0.30±0.18 fm⁻¹

⇒ Excellent agreement with *ab initio* $ANC^2=0.618 \text{ fm}^{-1} \& 1.644 \text{ fm}^{-1}$ ANCs of ¹¹Be and ¹⁵C reproduce knockout data,...

Chloë Hebborn

ECT* workshop 2021

ANCs of ¹¹Be and ¹⁵C reproduce knockout data,...

diffractive breakup data

PHYSICAL REVIEW C 98, 034610 (2018)

Dissecting reaction calculations using halo effective field theory and ab initio input

E Cagel^{1,5,4,4}, D. R. Phillips,^{1,4,4,4} and H.-W. Hannord^{1,4,4} ¹/maint die Konphysik, Johanne Granderey, Eliverstand Marcs, 1999 Maine, Germany ¹Pspisaet Indexidere et Physicae Quantigue (CP 229), Discretis Birte de Bracelles (CRI), Br 1039 Brasek, Disjan ¹Ibainte (Konphysik), Tachetto Chierrishi Dimannek (APED Durnsak, Carmany ¹EustMe Maure Instaine SMM, CSI Melindargamma (Ré Schurrisantyforschurg Cadel), 6529 Dimanak, Carmany ¹EustMe Maure Instaine SMM, CSI Melindargamma (Physica and Astronova), Ghino Ginerry, Macco, Oler 4570, UCA ¹Charman, March Physica and Department of Physica and Astronova, Ghino Ginerry, Macco, Oler 4570, UCA ¹/mainter of Walcare and Parille Physica. Biology Computing Co

transfer data,

PHYSICAL REVIEW C 98, 054602 (2018)

Systematic analysis of the peripherality of the ${}^{10}\text{Be}(d,p){}^{11}\text{Be}$ transfer reaction and extraction of the asymptotic normalization coefficient of ${}^{11}\text{Be}$ bound states

J. Yang^{1,2,*} and P. Capel^{1,3,†}

Physique Nucléaire et Physique Quantique (CP 229), Université libre de Bravelles (ULB), B-1050 Bravsels, Belgium ²Afdeling Kern en Stralingsfysica, Celestijonshaw 2006-bas 2418, B-3001 Leavon, Brégium ³Installe, Johnson Causeboy-Université Malex, D-3509 Malex, Germony

and radiative capture data !

PHYSICAL REVIEW C 100, 044615 (2019)

¹⁵C: From halo effective field theory structure to the study of transfer, breakup, and radiative-capture reactions

Laura Moschini 0,1-7 ficeheng Yang 0,1-3-1 and Pierre Capel 0^{-1,1,4} ¹Physique Nucleinie et Physique Chantique (C.P. 229), Obierneit libre de Bracelleu (U.B), 50 euroue D. Rosovech, Bello (Oldo Brassis, Bellou) ²Afdeling Kernen Strafforgfision, Cateoligienskar 2004 Aug 2418, 300 Lauron, Brégian ³Jostine für Kerneyhvir, Johanne Gauseberg-Universitä Mata, Manos-Audri-Beckerre Vige 4, D. 52599 Maiste, Germany

- 日 ト - (理)ト - (三 ト - 4 三)

Physique Muchaire et Physique Quantique (C.P. 228). Université libre de Bruselles (OLB). 50 evenue 720. Bousevelt. 8-1850 Brusselt. Belgium

Summary for halo nuclei

Halo nuclei : peripherality of knockout reactions Halo-EFT bridges *ab initio* and reaction theory

⇒ One-neutron KO of halo nuclei are not sensitive to SF ⇒ Good agreement probably due to use of a realistic ANC Sensitivity to the optical potentials → Need for a more systematic study

What happens when the binding energy increases?

Chloë Hebborn

What happens when the binding energy increases?

Irrealistic ¹¹Be : $1/2^+$ g.s. $S_n = 10$ MeV

Beyond Halo-EFT : use a Gaussian potential $V_{s1/2}$

$$V_{s1/2}^{cn}(r) = V_{s1/2}^{(0)} e^{-\frac{r^2}{2r_0^2}}$$

We constrain $V_{s1/2}^{(0)}$ with separation energy S_n Generation of different g.s. wavefunctions with various r_0

Chloë Hebborn

ECT* workshop 2021

Sensitivity for deeply-bound projectile

• Larger $r_0 \rightarrow$ larger ANC \rightarrow larger $\sigma_{str}^{sp,i}$ and $\sigma_{bu}^{sp,i}$ (with $\sigma_{str}^{sp,i} > \sigma_{bu}^{sp,i}$)

Sensitivity for deeply-bound projectile

• Larger $r_0 \rightarrow$ larger ANC \rightarrow larger $\sigma_{str}^{sp,i}$ and $\sigma_{bu}^{sp,i}$ (with $\sigma_{str}^{sp,i} > \sigma_{bu}^{sp,i}$)

• Rescale with the ANC² \rightarrow same asymptotics but SF=0.2–0.01

Peak does not scale with the ANC² $\sigma_{bu}^{sp,i}$ stays mainly peripheral but $\sigma_{str}^{sp,i}$ more sensitive to short distances $\Rightarrow \sigma_{ko}^{sp,i}$ depends non-linearly on SF

Sensitivity for deeply-bound projectile

- Larger $r_0 \rightarrow$ larger ANC \rightarrow larger $\sigma_{str}^{sp,i}$ and $\sigma_{bu}^{sp,i}$ (with $\sigma_{str}^{sp,i} > \sigma_{bu}^{sp,i}$)
- Rescale with the ANC² \rightarrow same asymptotics but SF=0.2-0.01
- Rescale with $\langle r^2 \rangle$: peak overestimated and tail underestimated Peak does not scale with the ANC² either with $\langle r^2 \rangle$ $\sigma_{bu}^{sp,i}$ stays mainly peripheral but $\sigma_{str}^{sp,i}$ more sensitive to short distances $\Rightarrow \sigma_{ko}^{sp,i}$ depends non-linearly on SF

What about integrated cross sections?

Each r_0 generates wave function with various $\langle r^2 \rangle$

Stripping : approximate linear dependence on $\langle r^2 \rangle$

Also for spatially-extended nuclei, e.g., halo nuclei, $\langle r^2 \rangle \propto ANC^2$

\Rightarrow Universal behavior of σ_{str} with $\langle r^2 \rangle$

 \rightarrow can be also demonstrated with perturbation analysis !

Summary

- \Rightarrow No sensitivity to the SF
- ⇒ Excellent agreement probably due to use of realistic ANCs

⁽²⁾ Halo-EFT bridges structure and reaction theory

 \Rightarrow Halo-EFT description at NLO of $^{11}\mathrm{Be}$ and $^{15}\mathrm{C}$ reproduce knockout, diffractive-breakup, transfer and radiative-capture data

Deeply-bound nuclei : σ_{ko} does not depend linearly on SF σ_{ko} depends approximately on $\langle r^2 \rangle$

 \Rightarrow Possibility to extract $\langle r^2 \rangle$ from KO data on various targets

 \Rightarrow Need to improve reaction model to understand the asymmetry dependence