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Why ann?

ann is really only “datum” on neutron-neutron interaction

Key source of information on charge-symmetry breaking in NN force

Extracted from reactions with (at least) three strongly-interacting particles

Disagreement between nd breakup data that give -16.5 fm and “accepted 
value” of -18.6(4) fm (which also incorporates some nd breakup results)



6He(p,p'α) and the nn scattering length

Quasi-free alpha-particle knockout can leave nn pair almost at rest

Final-state interaction then generates significant dependence of neutron 
relative-energy spectrum f(p2/mn) on ann

6He acts as a “holder” for low-momentum neutrons  

Neutrons actually move fast in lab. frame: inverse kinematics
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RIKEN experiment

Detect proton and alpha in TPC

Detect neutrons in HIME + NEBULA: excellent energy resolution 

Tom Aumann spokesperson
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Theory uncertainties?
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Halo EFT

Define Rhalo=<r2>1/2. Seek EFT expansion in Rcore/Rhalo. Valid for λ≲Rhalo

Typically R≡Rcore∼2 fm.  Since <r2> is related to the neutron separation 
energy we seek systems with neutron separation energies less than 1 MeV

By this definition the deuteron is the lightest halo nucleus, and the pionless 
EFT for few-nucleon systems is a specific case of halo EFT

22C, 11Li, 12Be, 62Ca (hypothesized), and 3H:  all s-wave 2n halos

4He

n

n

λ≫Rcore; λ≲Rhalo



Lagrangian: shallow S- and P-states

c, n: “core”, “neutron” fields. c: boson, n: fermion

σ, πj: S-wave and P-wave fields

Minimal substitution generates leading EM couplings

Additional EM couplings at sub-leading order
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Fun facts: p-wave scattering amplitude 

Bethe (1949)⟨k | tnα (p2/(2μnα)) |k′ ⟩ = − 6π
μnα

k ⋅ k′ 
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Wigner (1955); Hammer & Lee (2009); Nishida (2012)
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Fun facts: p-wave scattering amplitude 
For a short-ranged potential, if pR≪1:

“Natural case” a1∼R3; r1∼1/R. ⇒ t1 ∼R3k2,, so small cf. t0 ∼1/k (N3LO)

But what if there is a low-energy p-wave resonance?

Causality says r1 ≲ -1/R

So low-energy resonance/bound state would seem to have to arise 
due to cancellation between -1/a1 and 1/2 r1 k2 terms. 

a1 ∼R/Mlo2 gives kR ∼Mlo

Bethe (1949)

Wigner (1955); Hammer & Lee (2009); Nishida (2012)

Bedaque, Hammer, van Kolck (2003)
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6He as a 2n halo
Rcore≈1.5 fm; Rhalo≈4 fm

4He-n interaction: 2P3/2 resonance

p-wave power counting only valid when not near the 2P3/2 resonance

“Standard” counting for nn 1S0: a0 at leading order, r0 at NLO

http://www.anl.gov

Bedaque, Hammer, van Kolck (2003)
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6He as a 2n halo
Rcore≈1.5 fm; Rhalo≈4 fm

4He-n interaction: 2P3/2 resonance

p-wave power counting only valid when not near the 2P3/2 resonance

“Standard” counting for nn 1S0: a0 at leading order, r0 at NLO

nα 2P3/2 at NLO: unitarity piece/width included perturbatively

nα 2S1/2: NLO effect, since a0=2.46 fm is “natural”

http://www.anl.gov

cf. Rotureau and van Kolck (2013)Ji, Elster, DP (2014)

Bedaque, Hammer, van Kolck (2003)
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“STM” equation for 6He

No longer just “s-wave” exchanges: Q0, Q1, and Q2 enter in exchange kernel

Asymptotic behavior stems from first term on right-hand side

No Efimov effect (not scale invariant: r1 present in asymptotic analysis)

Three-body force needed at LO for renormalization 

=An + 2× AnAn

+ An

Ji, Elster, DP (2014)



“STM” equation for 6He

No longer just “s-wave” exchanges: Q0, Q1, and Q2 enter in exchange kernel

Asymptotic behavior stems from first term on right-hand side

No Efimov effect (not scale invariant: r1 present in asymptotic analysis)

Three-body force needed at LO for renormalization 

=An + 2× AnAn

+ An

Jona-Lasinio, Pricoupenko, Castin (2008); Braaten, Hagen, Hammer, Platter (2011); Nishida (2012)

Ji, Elster, DP (2014)
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Energy spectrum without FSI

EFT result shown with error band constructed as pnn/Λb

Encompasses results of both local Gaussian model and a Yamaguchi model

Each of which includes several (and not the same) NLO effects

And note again that Δann=2.0 fm has no impact on non-FSI energy spectrum



Adding FSI
FSI enhancement 

factor (“G1”):
Slobodrian (1971)

G1(p) = ((p2 + α2)rnn /2)2

(− 1
ann

+ rnn

2 p2)2 + p2
, α = 1/rnn(1 + 1 − 2rnn /ann)

Explicit calculation of 
rescattering (“t”):

ΨwFSI(p, q) = ⟨p, q | (( + tnn(Ep)G(nn)
0 (Ep)) |Ψ⟩

= Ψ(p, q) + 2
π

g0(p) 1
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2 p2 + ip ∫ dp′ p′ 2g0(p′ )(p2 − p′ 2 + iϵ)−1Ψ(p′ , q)
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Adding FSI
FSI enhancement 

factor (“G1”):
Slobodrian (1971)

Little sensitivity to FSI 
implementation

G1(p) = ((p2 + α2)rnn /2)2
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2 p2)2 + p2
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Explicit calculation of 
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Towards an EFT treatment of FSI

k ⨠ p, q, ɣ so count powers of p/k and q/k in each diagram

q∾k suppressed by (ɣ/k)4≈(50 MeV/300 MeV)4

This diagram∾q Tnn for small q and p compared to QF with no FSI: Enhanced

Diagram calculable: (1 + tnn G0) regularized by 3B wave function

nα interaction∾(q/k)2 Tnα(Enα)

Short-distance reaction mechanism dominates at large !: different q behavior

Tnn

-q
-q+p/2

-q-p/2

(!,q+k)
q

Ac

Eikonal like

Hammer, Phillips, et al., in preparation



6He wave function at NLO
Above results used LO in expansion in Rcore/Rhalo≈1/4 for wave function

At NLO we need to consider impact of rnn in nn 1S0 and ik3 in 2P3/2

Also include 2S1/2 nα channel

Accuracy expected (Rcore/Rhalo)2≈1/16; note ann dependence of  small|ψ⟩

Thapalaiya, Ji, DP; 
Thapaliya Ph.D. thesis 

(2016)



Conclusions & Implications for experiment
Halo EFT provides a systematic way to treat weakly-bound nuclei

Establishes universal correlations

Can compute ann dependence of neutron spectrum in 6He(p,p'α)

Almost all ann-dependence comes from nn FSI

Very little dependence on 6He structure or regulator or rnn

Phenomenological FSI treatment encouraging but want error estimates; 
EFT treatment under development. 

NLO wave function also in progress.

Binning data in q could reduce theory uncertainty and provide check

Theoretical uncertainties assessed as (Rcore/Rhalo)n+1

Which quantities must be controlled for a given accuracy

Göbel, Hammer, Ji, DP, Thapaliya

Göbel et al., arXiv:2103.03224
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Two-body t beyond LO
t2B
0 (E) = − 2π

mR

1
k cot δ(E) − ik

; k = 2mRE

k cot δ(E) = − 1
a
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2 rk2 + O(k4R3)
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Two-body t beyond LO

Effective-range expansion, valid for kR<1

Typical situation |r|∼R. Here we assume |r|≪|a|

Expand t in r/a

...provided k∼1/a. As good as ERE?

LO NLO

t(E) = 2πa
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1
1 + iak

1 + 1
2
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+ O ( r2
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; k = 2mRE

k cot δ(E) = − 1
a

+ 1
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σnc coupling g0 of order Rhalo, nc loop of order 1/Rhalo. Therefore need 
to sum all bubbles:

Dressing the s-wave state

D�(p) =
1

�0 + �0[p0 � p2/(2Mnc)]� ⇥�(p)

= +

t =
2�

mR

1
1
a0
� 1

2r0k2 + ik

Kaplan, Savage, Wise; van Kolck; Gegelia; 
Birse, Richardson, McGovern
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Counting in S waves: 
a0∼Rhalo∼1/γ0; r0∼Rcore. 

r0=0 at LO.
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The multi-dimensional Halo EFT space
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Plus 
complementary 
direction: Nα

E.g. 9Be, 12C*, etc.
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Equations for s-wave 2n halo
Canham, Hammer (2008)



Core-n and n-n contact interactions at leading order: solve 3B problem

(cn)-n contact interaction to stabilize three-body system

Equations for s-wave 2n halo

= 2×Ac An
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Core-n and n-n contact interactions at leading order: solve 3B problem

(cn)-n contact interaction to stabilize three-body system

Efimov-Thomas effects

Equations for s-wave 2n halo

= 2×Ac An

An
+ An

= Ac + An

Canham, Hammer (2008)
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Core-n and n-n contact interactions at leading order: solve 3B problem

(cn)-n contact interaction to stabilize three-body system

Efimov-Thomas effects

Inputs: Enn=1/(m ann2), Enc, S2n (=B)

Output: everything; up to O(Rcore/Rhalo)

Equations for s-wave 2n halo

= 2×Ac An

An
+ An

= Ac + An

Canham, Hammer (2008)
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Universal correlation
Plot and (S1/2 channel) vs. triton binding energy

Phillips (1968), Bedaque, Hammer, 
van Kolck (2000), Bedaque, Repak, 

Griesshammer, Hammer, (2002) 



Shallow p-wave resonance

Formally we dress the a p-wave bound-state field via a Dyson equation:

Here both Δ1 and g1 are mandatory for renormalization at LO

Reproduces ERE. But here (cf. s waves) cannot take r1=0 at LO

Since resonance arises due to cancellation between larger Δ1 and ηE 
we can neglect ik3 (i.e. width) at leading order, as long as we are away 
from the resonance

= +

Bertulani, Hammer, van Kolck (2002); Bedaque, Hammer, van Kolck (2003)
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Implications: 6He calculation

Cannot predict S2n for 6He 0+ ground state from nn and 5He input 
alone

Properties of 6He strongly correlated with S2n.  Affected by ann.  

What about kR and r1?

No Efimov effect. But perhaps a remnant.

Does same three-body force enter 2+?. Or no three-body force?

(Need to fully treat 5He resonances in three-body resonance regime)
Ryberg, Forssen, Platter (2017)



A universal correlation in 6He
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A universal correlation in 6He

Helium-6 matter radius as a function of S2n
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A universal correlation in 6He

Helium-6 matter radius as a function of S2n
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Don’t need to compute 
full radius in ab initio 
model since “exterior” 
part of radius explained 
by Halo EFT 



6He probability distributions

• Calculation done 
here using 
Faddeev equations 
and potentials 
that reproduce 
EFT amplitude up 
to a given order

• Energy-dependent 
potential already 
at LO; not as 
simple as just “get 
wave function and 
use quantum 
mechanics”

Göbel, Hammer, Ji, Phillips, FBS (2019)
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Cutoff independence

Low-momentum results are 
independent of form and value of 

cutoff

Sharp cutoff at 
750 MeV vs. 

sharp cutoff at 
1500 MeV

Sharp cutoff vs. 
Yamaguchi form factor


