Neutron-neutron scattering length from the ${}^{6}\text{He}(p,p'\alpha)$ nn reaction

arXiv:2103.03224

Daniel Phillips Institute of Nuclear & Particle Physics Ohio University

with Matthias Göbel, Hans-Werner Hammer, Tom Aumann, Carlos Bertulani, Tobias Frederico

TECHNISCHE UNIVERSITÄT DARMSTADT

RESEARCH SUPPORTED BY THE US DOE, THE DFG, AND EMMI

Outline

Measuring ann using neutrons held by 6He

- Why ann?
- The experimental proposal
- Predictions for neutron spectra
- Halo EFT for 6He
 - EFT for short-range p-wave interactions
 - 2n halo nuclei
 - LO EFT for ⁶He structure
 - Phenomenological treatments of FSI
- Future improvements to theory
- Conclusion

Why ann!

ann is really only "datum" on neutron-neutron interaction

- Key source of information on charge-symmetry breaking in NN force
- Extracted from reactions with (at least) three strongly-interacting particles
- Disagreement between nd breakup data that give -16.5 fm and "accepted value" of -18.6(4) fm (which also incorporates some nd breakup results)

⁶He(p,p' α) and the nn scattering length

- Quasi-free alpha-particle knockout can leave nn pair almost at rest
- Final-state interaction then generates significant dependence of neutron relative-energy spectrum f(p²/m_n) on a_{nn}
- ⁶He acts as a "holder" for low-momentum neutrons
- Neutrons actually move fast in lab. frame: inverse kinematics

RIKEN experiment

Tom Aumann spokesperson

- Detect proton and alpha in TPC
- Detect neutrons in HIME + NEBULA: excellent energy resolution

Sensitive to a_{nn} from FSI **not** structure and **not** r_{nn}

Sensitive to ann from FSI not structure and not rnn

Sensitive to a_{nn} from FSI **not** structure and **not** r_{nn}

Halo EFT

Halo EFT

• Define $R_{halo} = \langle r^2 \rangle^{1/2}$. Seek EFT expansion in R_{core}/R_{halo} . Valid for $\lambda \leq R_{halo}$

- Typically R=R_{core}~2 fm. Since <r²> is related to the neutron separation energy we seek systems with neutron separation energies less than I MeV
- By this definition the deuteron is the lightest halo nucleus, and the pionless EFT for few-nucleon systems is a specific case of halo EFT

²²C, ¹¹Li, ¹²Be, ⁶²Ca (hypothesized), and ³H: all s-wave 2n halos

Lagrangian: shallow S- and P-states

$$\mathcal{L} = c^{\dagger} \left(i\partial_{t} + \frac{\nabla^{2}}{2M} \right) c + n^{\dagger} \left(i\partial_{t} + \frac{\nabla^{2}}{2m} \right) n$$

+ $\sigma^{\dagger} \left[\eta_{0} \left(i\partial_{t} + \frac{\nabla^{2}}{2M_{nc}} \right) + \Delta_{0} \right] \sigma + \pi^{\dagger}_{j} \left[\eta_{1} \left(i\partial_{t} + \frac{\nabla^{2}}{2M_{nc}} \right) + \Delta_{1} \right] \pi_{j}$
- $g_{0} \left[\sigma n^{\dagger} c^{\dagger} + \sigma^{\dagger} nc \right] - \frac{g_{1}}{2} \left[\pi^{\dagger}_{j} (n \ i \overleftrightarrow{\nabla}_{j} \ c) + (c^{\dagger} \ i \overleftrightarrow{\nabla}_{j} \ n^{\dagger}) \pi_{j} \right]$
- $\frac{g_{1}}{2} \frac{M - m}{M_{nc}} \left[\pi^{\dagger}_{j} \ i \overrightarrow{\nabla}_{j} \ (nc) - i \overleftrightarrow{\nabla}_{j} \ (n^{\dagger} c^{\dagger}) \pi_{j} \right] + \dots,$

c, n: "core", "neutron" fields. c: boson, n: fermion

- σ , π_j : S-wave and P-wave fields
- Minimal substitution generates leading EM couplings
- Additional EM couplings at sub-leading order

$$\langle \mathbf{k} | t_{n\alpha} \left(p^2 / (2\mu_{n\alpha}) \right) | \mathbf{k}' \rangle = -\frac{6\pi}{\mu_{n\alpha}} \frac{\mathbf{k} \cdot \mathbf{k}'}{-\frac{1}{a_1} + \frac{1}{2}r_1 p^2 - ip^3}$$

Bethe (1949)

For a short-ranged potential, if pR«I:

$$\langle \mathbf{k} | t_{n\alpha} \left(p^2 / (2\mu_{n\alpha}) \right) | \mathbf{k}' \rangle = -\frac{6\pi}{\mu_{n\alpha}} \frac{\mathbf{k} \cdot \mathbf{k}'}{-\frac{1}{a_1} + \frac{1}{2}r_1 p^2 - ip^3}$$
 Bethe (1949)

For a short-ranged potential, if pR«I:

$$\langle \mathbf{k} | t_{n\alpha} \left(p^2 / (2\mu_{n\alpha}) \right) | \mathbf{k}' \rangle = -\frac{6\pi}{\mu_{n\alpha}} \frac{\mathbf{k} \cdot \mathbf{k}'}{-\frac{1}{a_1} + \frac{1}{2}r_1 p^2 - ip^3}$$
 Bethe (1949)

• "Natural case" $a_1 \sim R^3$; $r_1 \sim I/R$. $\Rightarrow t_1 \sim R^3 k^{2_2}$, so small cf. $t_0 \sim I/k$ (N³LO)

■ For a short-ranged potential, if pR≪I:

$$\langle \mathbf{k} | t_{n\alpha} \left(p^2 / (2\mu_{n\alpha}) \right) | \mathbf{k}' \rangle = -\frac{6\pi}{\mu_{n\alpha}} \frac{\mathbf{k} \cdot \mathbf{k}'}{-\frac{1}{a_1} + \frac{1}{2}r_1 p^2 - ip^3}$$
 Bethe (1949)

• "Natural case" $a_1 \sim R^3$; $r_1 \sim I/R$. $\Rightarrow t_1 \sim R^3 k^{2_2}$, so small cf. $t_0 \sim I/k$ (N³LO)

But what if there is a low-energy p-wave resonance?

■ For a short-ranged potential, if pR≪I:

$$\langle \mathbf{k} | t_{n\alpha} \left(p^2 / (2\mu_{n\alpha}) \right) | \mathbf{k}' \rangle = -\frac{6\pi}{\mu_{n\alpha}} \frac{\mathbf{k} \cdot \mathbf{k}'}{-\frac{1}{a_1} + \frac{1}{2}r_1 p^2 - ip^3}$$
 Bethe (1949)

• "Natural case" $a_1 \sim R^3$; $r_1 \sim I/R$. $\Rightarrow t_1 \sim R^3 k^{2_2}$, so small cf. $t_0 \sim I/k$ (N³LO)

But what if there is a low-energy p-wave resonance?

Causality says r₁ ≤ -1/R

Wigner (1955); Hammer & Lee (2009); Nishida (2012)

For a short-ranged potential, if pR«I:

$$\langle \mathbf{k} | t_{n\alpha} \left(p^2 / (2\mu_{n\alpha}) \right) | \mathbf{k}' \rangle = -\frac{6\pi}{\mu_{n\alpha}} \frac{\mathbf{k} \cdot \mathbf{k}'}{-\frac{1}{a_1} + \frac{1}{2}r_1 p^2 - ip^3}$$
 Bethe (1949)

• "Natural case" $a_1 \sim R^3$; $r_1 \sim I/R$. $\Rightarrow t_1 \sim R^3 k^{2_1}$, so small cf. $t_0 \sim I/k$ (N³LO)

- But what if there is a low-energy p-wave resonance?
- Causality says $r_1 \lesssim -I/R$ Wigner (1955); Hammer & Lee (2009); Nishida (2012)
- So low-energy resonance/bound state would seem to have to arise due to cancellation between - 1/a₁ and 1/2 r₁ k² terms.
- $a_1 \sim R/M_{10}^2$ gives $k_R \sim M_{10}$

Bedaque, Hammer, van Kolck (2003)

• $R_{core} \approx 1.5 \text{ fm}; R_{halo} \approx 4 \text{ fm}$

- $R_{core} \approx 1.5 \text{ fm}; R_{halo} \approx 4 \text{ fm}$
- ⁴He-n interaction: ²P_{3/2} resonance $\langle \mathbf{k} | t_{n\alpha} \left(p^2 / (2\mu_{n\alpha}) \right) | \mathbf{k}' \rangle = -\frac{6\pi}{\mu_{n\alpha}} \frac{\mathbf{k} \cdot \mathbf{k}'}{-\frac{1}{a_1} + \frac{1}{2}r_1p^2}$

p-wave power counting only valid when not near the ²P_{3/2} resonance

Bedaque, Hammer, van Kolck (2003)

"Standard" counting for nn ¹S₀: a₀ at leading order, r₀ at NLO

$$\langle \mathbf{k} | t_{nn}(p^2/(2\mu_{nn})) | \mathbf{k}' \rangle = -\frac{2\pi}{\mu_{nn}} \frac{1}{-\frac{1}{a_0} - ip}$$

- $R_{core} \approx 1.5 \text{ fm}; R_{halo} \approx 4 \text{ fm}$
- ⁴He-n interaction: ²P_{3/2} resonance

$$\langle \mathbf{k} | t_{n\alpha} \left(p^2 / (2\mu_{n\alpha}) \right) | \mathbf{k}' \rangle = -\frac{6\pi}{\mu_{n\alpha}} \frac{\mathbf{k} \cdot \mathbf{k}'}{-\frac{1}{a_1} + \frac{1}{2}r_1 p^2}$$

p-wave power counting only valid when not near the ²P_{3/2} resonance

Bedaque, Hammer, van Kolck (2003)

"Standard" counting for nn ¹S₀: a₀ at leading order, r₀ at NLO

$$\langle \mathbf{k} | t_{nn}(p^2/(2\mu_{nn})) | \mathbf{k}' \rangle = -\frac{2\pi}{\mu_{nn}} \frac{1}{-\frac{1}{a_0} - ip}$$

• $n\alpha^2 P_{3/2}$ at NLO: unitarity piece/width included perturbatively

Ji, Elster, DP (2014) cf. Rotureau and van Kolck (2013)

• $n\alpha {}^{2}S_{1/2}$: NLO effect, since $a_{0}=2.46$ fm is "natural"

"STM" equation for 6He

Ji, Elster, DP (2014)

- No longer just "s-wave" exchanges: Q₀, Q₁, and Q₂ enter in exchange kernel
- Asymptotic behavior stems from first term on right-hand side
- No Efimov effect (not scale invariant: r₁ present in asymptotic analysis)
- Three-body force needed at LO for renormalization

"STM" equation for 6He

Ji, Elster, DP (2014)

- No longer just "s-wave" exchanges: Q₀, Q₁, and Q₂ enter in exchange kernel
- Asymptotic behavior stems from first term on right-hand side
- No Efimov effect (not scale invariant: r₁ present in asymptotic analysis)
 Jona-Lasinio, Pricoupenko, Castin (2008); Braaten, Hagen, Hammer, Platter (2011); Nishida (2012)
- Three-body force needed at LO for renormalization

Renormalizing ⁶He

Renormalizing ⁶He

Ji, Elster, DP (2014)

Renormalizing ⁶He

Ji, Elster, DP (2014)

• EFT result shown with error band constructed as p_{nn}/Λ_b

• EFT result shown with error band constructed as p_{nn}/Λ_b

Encompasses results of both local Gaussian model and a Yamaguchi model

- EFT result shown with error band constructed as p_{nn}/Λ_b
- Encompasses results of both local Gaussian model and a Yamaguchi model
- Each of which includes several (and not the same) NLO effects

• EFT result shown with error band constructed as p_{nn}/Λ_b

- Encompasses results of both local Gaussian model and a Yamaguchi model
- Each of which includes several (and not the same) NLO effects

• EFT result shown with error band constructed as p_{nn}/Λ_b

- Encompasses results of both local Gaussian model and a Yamaguchi model
- Each of which includes several (and not the same) NLO effects

• And note again that Δa_{nn} =2.0 fm has no impact on non-FSI energy spectrum

Adding FSI

FSI enhancement factor ("G₁"):

$$G_{1}(p) = \frac{((p^{2} + \alpha^{2})r_{nn}/2)^{2}}{(-\frac{1}{a_{nn}} + \frac{r_{nn}}{2}p^{2})^{2} + p^{2}}, \quad \alpha = 1/r_{nn}(1 + \sqrt{1 - 2r_{nn}/a_{nn}})$$

Slobodrian (1971)

Explicit calculation of rescattering ("t"):

$$\begin{split} \Psi^{\text{wFSI}}(p,q) &= \langle p,q \,|\, (\mathbb{I} + t_{nn}(E_p)G_0^{(nn)}(E_p)) \,|\,\Psi\rangle \\ &= \Psi(p,q) + \frac{2}{\pi}g_0(p)\frac{1}{a_{nn}^{-1} - \frac{r_{nn}}{2}p^2 + ip} \int dp' p'^2 g_0(p')(p^2 - p'^2 + i\epsilon)^{-1}\Psi(p',q) \end{split}$$

2

Adding FSI

FSI enhancement factor ("G₁"):

$$G_{1}(p) = \frac{((p^{2} + \alpha^{2})r_{nn}/2)^{2}}{(-\frac{1}{a_{nn}} + \frac{r_{nn}}{2}p^{2})^{2} + p^{2}}, \quad \alpha = 1/r_{nn}(1 + \sqrt{1 - 2r_{nn}/a_{nn}})$$

Slobodrian (1971)

Explicit calculation of rescattering ("t"):

$$=\Psi(p,q) + \frac{2}{\pi}g_0(p)\frac{1}{a_{nn}^{-1} - \frac{r_{nn}}{2}p^2 + ip}\int dp'p'^2g_0(p')(p^2 - p'^2 + i\epsilon)^{-1}\Psi(p',q)$$

 $\Psi^{\text{wFSI}}(p,q) = \langle p,q | (\mathbb{I} + t_{nn}(E_p)G_0^{(nn)}(E_p)) | \Psi \rangle$

Adding FSI

FSI enhancement factor ("G₁"):

$$G_{1}(p) = \frac{((p^{2} + \alpha^{2})r_{nn}/2)^{2}}{(-\frac{1}{a_{nn}} + \frac{r_{nn}}{2}p^{2})^{2} + p^{2}}, \quad \alpha = 1/r_{nn}(1 + \sqrt{1 - 2r_{nn}/a_{nn}})$$

Slobodrian (1971)

Explicit calculation of rescattering ("t"):

$$=\Psi(p,q) + \frac{2}{\pi}g_0(p)\frac{1}{a_{nn}^{-1} - \frac{r_{nn}}{2}p^2 + ip}\int dp'p'^2g_0(p')(p^2 - p'^2 + i\epsilon)^{-1}\Psi(p',q)$$

 $\Psi^{\text{wFSI}}(p,q) = \langle p,q | (\mathbb{I} + t_{nn}(E_p)G_0^{(nn)}(E_p)) | \Psi \rangle$

Towards an EFT treatment of FSI

• $k \gg p, q, \gamma$ so count powers of p/k and q/k in each diagram

Eikonal like

- $q \sim k$ suppressed by $(\chi/k)^4 \approx (50 \text{ MeV}/300 \text{ MeV})^4$
- This diagram $\sim q T_{nn}$ for small q and p compared to QF with no FSI: Enhanced
- Diagram calculable: (I + t_{nn} G₀) regularized by 3B wave function
- $n\alpha$ interaction $\sim (q/k)^2 T_{n\alpha}(E_{n\alpha})$
- Short-distance reaction mechanism dominates at large ω : different q behavior

⁶He wave function at NLO

- Above results used LO in expansion in $R_{core}/R_{halo} \approx 1/4$ for wave function
- At NLO we need to consider impact of r_{nn} in nn ${}^{1}S_{0}$ and ik³ in ${}^{2}P_{3/2}$
- Also include ${}^{2}S_{1/2}$ n α channel
- Accuracy expected $(R_{core}/R_{halo})^2 \approx 1/16$; note a_{nn} dependence of $|\psi\rangle$ small

Thapalaiya, Ji, DP; Thapaliya Ph.D. thesis (2016)

Conclusions & Implications for experiment

- Halo EFT provides a systematic way to treat weakly-bound nuclei Theoretical uncertainties assessed as (R_{core}/R_{halo})ⁿ⁺¹
- Establishes universal correlations
- Which quantities must be controlled for a given accuracy • Can compute a_{nn} dependence of neutron spectrum in ${}^{6}\text{He}(p,p'\alpha)$
- Almost all ann-dependence comes from nn FSI

Göbel et al., arXiv:2103.03224

- Very little dependence on ⁶He structure or regulator or r_{nn}
- Phenomenological FSI treatment encouraging but want error estimates; EFT treatment under development.
- NLO wave function also in progress.

Göbel, Hammer, Ji, DP, Thapaliya

Binning data in q could reduce theory uncertainty and provide check

Backup Slides

$$t_0^{2B}(E) = -\frac{2\pi}{m_R} \frac{1}{k \cot \delta(E) - ik}; \quad k = \sqrt{2m_R E}$$

$$k \cot \delta(E) = -\frac{1}{a} + \frac{1}{2}rk^2 + O(k^4 R^3)$$

$$t_0^{2B}(E) = -\frac{2\pi}{m_R} \frac{1}{k \cot \delta(E) - ik}; \quad k = \sqrt{2m_R E}$$

$$k \cot \delta(E) = -\frac{1}{a} + \frac{1}{2}rk^2 + O(k^4 R^3)$$

• Effective-range expansion, valid for kR < I

$$t_0^{2B}(E) = -\frac{2\pi}{m_R} \frac{1}{k \cot \delta(E) - ik}; \quad k = \sqrt{2m_R E}$$

$$k \cot \delta(E) = -\frac{1}{a} + \frac{1}{2}rk^2 + O(k^4 R^3)$$

- Effective-range expansion, valid for kR < I
- Typical situation $|r| \sim R$. Here we assume $|r| \ll |a|$

$$t_0^{2B}(E) = -\frac{2\pi}{m_R} \frac{1}{k \cot \delta(E) - ik}; \quad k = \sqrt{2m_R E}$$

$$k \cot \delta(E) = -\frac{1}{a} + \frac{1}{2}rk^2 + O(k^4 R^3)$$

- Effective-range expansion, valid for kR < I
- Typical situation $|r| \sim R$. Here we assume $|r| \ll |a|$
- Expand t in r/a

$$t(E) = \frac{2\pi a}{m_R} \frac{1}{1 + iak} \left[1 + \frac{1}{2} \frac{rk^2}{1/a + ik} + O\left(\frac{r^2}{a^2}\right) \right]$$

LO NLO

...provided k~I/a.As good as ERE?

Dressing the s-wave state

Kaplan, Savage, Wise; van Kolck; Gegelia; Birse, Richardson, McGovern • σnc coupling g₀ of order R_{halo}, nc loop of order I/R_{halo}. Therefore need to sum all bubbles: $D_{\sigma}(p) = \frac{1}{\Delta_0 + \eta_0 [p_0 - \mathbf{p}^2 / (2M_{nc})] - \Sigma_{\sigma}(p)}$ $\Sigma_{\sigma}(p) = -\frac{g_0^2 m_R}{2\pi} \left| \mu + i \sqrt{2m_R \left(p_0 - \frac{\mathbf{p}^2}{2M_{nc}} + i\eta \right)} \right| \quad \text{(PDS)}$ $t = \frac{2\pi}{m_R} \frac{1}{\frac{1}{m_R} - \frac{1}{2}r_0k^2 + ik}$ $D_{\sigma}(p) = \frac{2\pi\gamma_0}{m_R^2 g_0^2} \frac{1}{1 - r_0\gamma_0} \frac{1}{p_0 - \frac{\mathbf{p}^2}{2M_c} + B_0} + \text{regular} \quad \begin{array}{l} \text{Counting in S waves:} \\ a_0 \sim \text{R}_{\text{halo}} \sim 1/\gamma_0; \ r_0 \sim \text{R}_{\text{core.}} \end{array}$ $r_0=0$ at LO.

Nn Single-neutron Single-neutron halos halos (s-wave) (p-wave) d, 19C 8Li

Canham, Hammer (2008)

Canham, Hammer (2008)

Core-n and n-n contact interactions at leading order: solve 3B problem

(cn)-n contact interaction to stabilize three-body system

Canham, Hammer (2008)

Core-n and n-n contact interactions at leading order: solve 3B problem

Canham, Hammer (2008)

Core-n and n-n contact interactions at leading order: solve 3B problem

Universal correlation

Phillips (1968), Bedaque, Hammer, van Kolck (2000), Bedaque, Repak, Griesshammer, Hammer, (2002)

Plot and (S1/2 channel) vs. triton binding energy

Shallow p-wave resonance

Bertulani, Hammer, van Kolck (2002); Bedaque, Hammer, van Kolck (2003)

Formally we dress the a p-wave bound-state field via a Dyson equation:

$$D_{\pi}(p) = \frac{1}{\Delta_1 + \eta_1 [p_0 - \mathbf{p}^2/(2M_{nc})] - \Sigma_{\pi}(p)}$$

- Here both Δ_1 and g_1 are mandatory for renormalization at LO

$$\Sigma_{\pi}(p) = -\frac{m_R g_1^2 k^2}{6\pi} \left[\frac{3}{2}\mu + ik\right]$$

- Reproduces ERE. But here (cf. s waves) cannot take r₁=0 at LO
- Since resonance arises due to cancellation between larger Δ₁ and ηE we can neglect ik³ (i.e. width) at leading order, as long as we are away from the resonance

Implications: 6He calculation

- Cannot predict S_{2n} for ⁶He 0⁺ ground state from nn and ⁵He input alone
- Properties of 6He strongly correlated with S_{2n}. Affected by ann.

Implications: 6He calculation

- Cannot predict S_{2n} for ⁶He 0⁺ ground state from nn and ⁵He input alone
- Properties of ⁶He strongly correlated with S_{2n}. Affected by a_{nn}.
- What about k_R and r₁?

- Cannot predict S_{2n} for ⁶He 0⁺ ground state from nn and ⁵He input alone
- Properties of 6He strongly correlated with S_{2n}. Affected by ann.
- What about k_R and r₁?
- No Efimov effect. But perhaps a remnant.

- Cannot predict S_{2n} for ⁶He 0⁺ ground state from nn and ⁵He input alone
- Properties of 6He strongly correlated with S_{2n}. Affected by ann.
- What about k_R and r₁?
- No Efimov effect. But perhaps a remnant.
- Does same three-body force enter 2+? Or no three-body force?

Ryberg, Forssen, Platter (2017)

- Cannot predict S_{2n} for ⁶He 0⁺ ground state from nn and ⁵He input alone
- Properties of 6He strongly correlated with S_{2n}. Affected by ann.
- What about k_R and r₁?
- No Efimov effect. But perhaps a remnant.
- Does same three-body force enter 2+? Or no three-body force?

Ryberg, Forssen, Platter (2017)

(Need to fully treat ⁵He resonances in three-body resonance regime)

A universal correlation in ⁶He

A universal correlation in ⁶He

Helium-6 matter radius as a function of S_{2n}

A universal correlation in ⁶He

Helium-6 matter radius as a function of S2n

Don't need to compute full radius in *ab initio* model since "exterior" part of radius explained by Halo EFT

⁶He probability distributions

Göbel, Hammer, Ji, Phillips, FBS (2019)

