Can Effective Field Theory for Deformation Reveal Alpha Clustering?

Nuclear Physics at the Edge of Stability, virtual ECT* Trento, 29 June 2021

Thomas Papenbrock

THE UNIVERSITY of TENNESSEE UT KNOXVILLE

OAK RIDGE NATIONAL LABORATORY

Work supported by the US Department of Energy

Collaborators

Benjamin Luna (former Tennessee Tech; now UTK) Toño Coello Pérez (presently at LLNL) Hans Weidenmüller (Heidelberg)

Can Effective Field Theory for Deformation Reveal Alpha Clustering?

In light nuclei, clustering and deformation seem to go hand in hand

Freer, Horiuchi, Kanada-En'yo, Lee & Meißner, Rev. Mod. Phys. 90, 035004 (2018)

Can Effective Field Theory for Deformation Reveal Alpha Clustering?

In rare-earth nuclei, deformation and weak binding / low-energy resonances of alpha particles coexist

- What are the observable consequences of this (if any)?
- It seems that the enormous Coulomb barrier special suppresses halo/resonance signatures

Scales in a light deformed nucleus

Effective Field Theory for Deformed Nuclei

The EFT for deformed nuclei works at lowest resolution; expansion in small parameter $\frac{\xi}{\Lambda} \ll 1$

• In the EFT for deformed nuclei we deal with emergent symmetry breaking from $SO(3) \rightarrow SO(2)$, and the degrees of freedom (θ, ϕ) are combined in radial the unit vector

 $\vec{e}_r(\theta,\phi) = (\cos\phi\sin\theta, \sin\phi\sin\theta, \cos\theta)^T$

which parametrizes the coset ${}^{SO(3)}/_{SO(2)} = S^2$, i.e. the unit sphere.

[TP 2011; TP & Weidenmüller 2014, 2015; Coello Pérez & TP 2015, 2016; Chen, Kaiser, Meißner & Meng 2017, 2018, 2020; Alnamlah, Coello Pérez & Phillips 2020]

• Other degrees of freedom are coupled via their spin \vec{K} and gauge potentials (or covariant derivatives)

$$\vec{A}(\theta,\phi) = \left(\vec{e}_r(\theta,\phi) \cdot \vec{K}\right) \cot\theta \ \vec{e}_\phi(\theta,\phi)$$
$$\vec{A}(\theta,\phi) = g\vec{e}_r(\theta,\phi) \times \vec{K}$$

which both produce monopole "magnetic" fields (or Berry curvatures). The coupling is via $\vec{A}(\theta,\phi) \cdot \frac{d}{dt} \vec{e}_r(\theta,\phi)$

[TP & Weidenmüller Phys. Rev. C 102, 044324 (2020); arXiv:2005.11865]

²³⁹Pu as a neutron coupled to ²³⁸Pu

Uncertainty estimates based on power counting

Leading order: Take moment of inertia (MOI) from ²³⁸Pu and adjust decoupling coefficient

Next-to-leading order: readjust MOI for ²³⁹Pu

Alpha clustering / halo nuclei

Image credit: NNDC

Computational approaches

- Ions are degrees of freedom
 - Cluster Models [Buck et al; Mur et al; Grassi et al; Huang, Bertulani & Guimaraes; Mukhamedzhanov et al, Blokhintsev et al; Yarmukhamedov et al; Artemov, Igamov, ...]
 - R matrix analysis [Descouvemont et al., ...]
 - Effective-range expansions [Baye, Capel, Sparenberg, ...]
 - EFTs [Capel, Forssén, Hammer, Higa, Phillips, Platter, Ryberg, Rupak, Schmickler, van Kolck, Zhang, ...]
- Nucleons are degrees of freedom
 - AMD [Horiuchi, Kanada En'yo, Neff, ...]
 - Ab initio [Dean Lee et al; Dohet-Eraly, Hupin, Navratil, Nollett, Quaglioni, Raimondi; Schiavilla, Wiringa, ...]

Here: what are relevant dimensionless parameters? → Benjamin Luna & TP, Phys. Rev. C 100, 054307 (2019); arXiv:1907.11345

Toward an EFT: expansion of Coulomb wave functions at low momenta

$$(\eta \equiv k_c/k \text{ and } \rho \equiv kR)$$

$$\begin{aligned} F_0(\eta,\rho) &= \frac{C_0(\eta)}{2\eta} \sum_{n=1}^{\infty} b_n (2k_c R)^{\frac{n}{2}} I_n (2\sqrt{2k_c R}), \\ G_0(\eta,\rho) &= \frac{2}{\beta_0(\eta) C_0(\eta)} \sum_{n=1}^{\infty} (-1)^n b_n (2k_c R)^{\frac{n}{2}} K_n (2\sqrt{2k_c R}). \end{aligned}$$

$$b_{1} = 1,$$

$$b_{2} = 0,$$

$$b_{3} = -\frac{1}{4\eta^{2}},$$

$$b_{4} = -\frac{1}{12\eta^{2}},$$

$$\beta_{0}(\eta) = -1 + \mathcal{O}(\eta^{-4})$$

- Expansion in terms of modified Bessel functions
- Coefficients b_n decay with increasing powers of the inverse Sommerfeld parameter
- Relevant combination $2\sqrt{2k_cR}$
- (Similar expansion for bound states)
- See DLMF https://dlmf.nist.gov

How large is
$$2\sqrt{2k_cR}$$
 ?

Cluster / halo states of ions: scales

Finite-range interactions essential

Inclusion of Coulomb potential qualitatively different for zero-range vs finite-range interactions

Solutions of the δ -shell + Coulomb potential

 δ -shell potential model exactly solvable [Kok *et al.*, Phys. Rev. C 26, 2381 (1982); Mur & Popov (1985); Mur *et al.* (1993)]

$H = H_0 + V$. Setting $R \rightarrow D$ yields for low-energy observables

$H_0 = -\frac{\hbar^2}{2m}\Delta + V_C(r)$	Observable	$2\sqrt{2k_cD} \gg 1$	$D \rightarrow 0$	
	a_0	$-(\pi\kappa^2 D)^{-1} e^{4\sqrt{2k_c D}}$	$-\frac{6k_c}{\kappa^2}$	
$\hbar^2 k_c$	r_0	$(3k_c)^{-1}$	$\mathcal{O}(D)$	
$V_C(r) = \frac{m n_c}{mr}$	ANC C_0	$(\pi D)^{-1/2} \Gamma (1 + k_c / \gamma) e^{2\sqrt{2k_c D}}$	$\sqrt{6k_c}\Gamma(1+k_c/\gamma)$	
	$\frac{\Gamma}{E}$	$4 \frac{k_c}{\kappa^2 D} e^{4\sqrt{2k_c D}} e^{-2\pi \frac{k_c}{\kappa}}$	$24\pi \frac{k_c^2}{\kappa^2} e^{-2\pi \frac{k_c}{\kappa}}$	
$V(r) = \frac{\hbar^2 \lambda_0}{\delta (r - R)}$	$\langle r^2 \rangle$	D^2	$\mathcal{O}(k_c^{-2})$	
m				

- Exponential enhancement of observables
 - Large scattering lengths are natural
 - Effective range close to $r_0 \approx (3k_c)^{-1}$
- The formulas in the $2\sqrt{2k_cD} \gg 1$ column yield reasonable estimates
 - $a_0 \approx -2480$ fm and $\Gamma \approx 7.5$ eV for ⁸Be (Exp.: about -2000 fm and 5.7 eV)

Zero-range interaction yields much too small inter-ion distance (This is the basis for the power counting from pion-less EFT)

Relations between observables

Relations hold for weak bound states and/or low-energy resonances in zero-energy limit

$$r_0 - \frac{1}{3k_c} = -\pi D e^{-4\sqrt{2k_c D}}$$
 Mur *et al.* (1993); König, Lee & Hammer (2013)

$$\kappa^{-2} = a_0 \left(r_0 - \frac{1}{3k_c} \right)$$
 Sparenberg, Capel & Baye (2010); Schmickler et al. (2019)

 $C_0^2 \approx \gamma^2 a_0 \left[\Gamma(1 + k_c / \gamma) \right]^2$ Sparenberg *et al*. (2010); König *et al*. (2013)

 $a_0 \approx -(4\pi k_c)^{-1} \frac{\Gamma}{E} e^{2\pi \frac{k_c}{\kappa}}$ Luna & TP (2019)

⁸Be as $\alpha + \alpha$

	E_m (MeV)	<i>E_b</i> (MeV)	E (keV)	Г (еV)	a_0 (fm)	r_{0} (fm)
δ shell	1.7	9.4			-2020±100	1.106±0.005
Experiment		20.2	92	5.75(25)		
Rasche (1967) Higa, Hammer, van Kolck (2008) Kamouni & Baye (2007)					-1650±150 -1920±90 -2390	1.084±0.011 1.099±0.005 1.114

"Model" momentum Λ_m starts to resolve range *D* of potential: $\Lambda_m = \sqrt{2k_c/D}$ "Breakdown" momentum Λ_b fully resolves range *D* of potential: $\Lambda_b = \pi/D$

- Finite-range models describe low-energy data accurately and precisely
- EFT probably worth revisiting
- Of course: microscopic approaches available [Elhatisari, Lee, Rupak et al 2015]

Summary

- Develop EFT for emergent symmetry breaking guided by standard approach in spontaneous symmetry breaking
- EFT is at lowest resolution; no cluster structure resolved
- Systematically improvable approach
 - Re-discovers venerable models
 - Gives uncertainty estimates
- Odd nuclei naturally introduce gauge potentials and Berry phases
- Examined scales relevant in low-energy physics of charged clusters
- Expansion of Coulomb wave functions exhibit relevant parameter $(2k_c D)^{\frac{1}{2}}$, where k_c is the Coulomb potential and D is approximately the sum of ion's radii
- Finite range / peripheral interactions essential

... Ingredients for an EFT of alpha clusters + deformation seem available