

Direct Observation of Proton Emission in ¹¹Be: experimental evidence and future developments

Y. Ayyad

U.S. National Science Foundation (NSF) Cooperative Agreement No. PHY-1565546 and GrantNo. PHY-1713857

From nuclear structure to dark matter

PROBING A HALO Dark matter Neutrons in the rare isotope lithium-11 are thought to orbit the nuclear core in a halo that boosts the size of the nucleus 10° roton density Extended halo 10 Neutron density Matter density 10⁻² Exp. data Proton 10 (سع) 10[°] 10 (سع) 10°° Neutron 10^{-4} WIMP-nucleon σ_{SI} [cm²] Credit: Nature, February 20, 2018, 10 doi: 10.1038/d41586-018-02221-9 10-6 ⁶He 10⁻⁷ -44 10 WIMP mass [GeV/c2] 10 XENONIT (1 txyr, this work) 2 4 6 8 10 12 0 LUX (201 (fm) 10 10^{-47} **Neutron lifetime** 10^{1} 10^{2} 10 WIMP mass [GeV/c²] The Beam Method $\tau = \frac{\dot{N}_{\alpha+t}}{\dot{N}} \left(\frac{\varepsilon_p}{\varepsilon_p}\right) (nl + L_{end})$ 1/v neutron monito Proton trap a, t detector B = 4.6 T central proton trac J. Byrne, P.G. Dawber, R.D. Scott, J.M. Robson, and G.L. Greene,

Instituto Galego de Física de Altas Enerxías (IGFAE)

Neutron lifetime puzzle

- Free neutron can B^- into a proton
- In beam method counts number of protons created
- In bottle method counts number of neutrons disappearing
- Both results are ~4o away
- Different observables measuring different decay modes?

*Nico result (2005) was superseded by an updated and improved result, Yue (2013); †Preliminary results

Adapted from

igfae.usc.es

Neutron dark decay

Recently, Fornal and Grisntein suggested that the neutron could decay to a dark matter particle

A branching ratio of ~1% would explain the neutron lifetime puzzle

igfae.usc.es

PHYSICAL REVIEW LETTERS 120. 191801 (2018)
Editors' Suggestion Featured in Physics
Dark Matter Interpretation of the Neutron Decay Anomaly
Bartosz Fornal and Benjamín Grinstein Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
(Received 19 January 2018; revised manuscript received 3 March 2018; published 9 May 2018)
Fornal and Grisntein PRL 120, 191801(2018)

Neutron dark decay in nuclei

- Fornal and Gristein already suggested that neutron dark decay could occur in nuclei with S_n<1.572 MeV
- ¹¹Be is the best candidate
- ${}^{11}\text{Be} \rightarrow {}^{10}\text{Be} + \chi$
- Branching ratio upper limit of 10⁻⁴, depending on the dark particle mass

Pfutzner, PRC 97, 042501 (2018)

FONDO EUROPEO DE DESENVOLVEMENTO REXIONAL Unha maneira de facer Europa

B⁻-delayed proton emission

- ¹¹Be is a halo nucleus
- Wave functions of the halo neutron and core can be treated independently
- The neutron can decay into a proton above the ¹¹B binding energy.
- Beta-delayed proton emission is possible if Sn<(mn-mp-me)c2≈0.782 MeV. Qbp = 280 keV.
- ¹¹Be \rightarrow ¹⁰Be + p

Riisager, Phys. Scr. **T152**, 014001 (2013)

Instituto Galego de Física de Altas Enerxías (IGFAE)

B⁻-delayed proton emission

- ¹¹Be is a halo nucleus
- Wave functions of the halo neutron and core can be treated independently
- The neutron can decay into a proton above the ¹¹B binding energy.
- Beta-delayed proton emission is possible if Sn<(mn-mp-me)c²≈0.782 MeV. Qbp = 280 keV.
- ¹¹Be \rightarrow ¹⁰Be + p (Very low energy!)

Phys. Rev. Lett. **124**, 042502

Instituto Galego de Física de Altas Enerxías (IGFAE)

¹¹Be B⁻-delayed proton emission

- Riisager *et al.* implanted ¹¹Be in a catcher and let it decay
- Then analyzed the ratio of ¹⁰Be/ ¹¹B in the catcher with the accelerator mass spectrometry technique
- Deduced that the ¹¹Be → ¹⁰Be branching ratio was 8.3(9)·10⁻⁶
- This value is orders of magnitude higher than theoretical predictions
- An unobserved resonance in ¹¹B could explain it
- Or another ¹¹Be → ¹⁰Be unknown branch... Riisager, Phys. Scr. **T152**, 014001 (2013) Riisager, PLB **732** 305 (2014)

Neutron dark decay in nuclei

Riisager *et al.* measured the combination of all decay branches leading to ¹¹Be \rightarrow ¹⁰Be (*n* disappearing)

This experiment specifically measured the ¹¹Be \rightarrow ¹⁰Be + p^+ branch (p^+ appearing)

Any discrepancy between both results would be an indication of unaccounted decay branches, with the dark decay as a very likely candidate

Active Target Time Projection Chamber

Experiment at TRIUMF (ISAC-I)

Implant-decay on the pAT-TPC

High detection efficiency (80%) and resolution ($\sigma(E) \sim 5\%$, $\sigma(\theta)=1$ deg)

Full reconstruction and identification of p and $\boldsymbol{\alpha}$

He(+10% CO₂) as thin tracking medium: low straggling and B-blind

¹¹Be ions drifted to the cathode

Xacobeo 2021

Suzuki. NIMA **691**

Protons of ~180 keV stopped in 10 cm tracks

galicia

FONDO EUROPEO DE DESENVOLVEMENTO REXIONAL Unha maneira de facer Europa

Energy spectra

Xacobeo 2021

galicia

FONDO EUROPEO DE DESENVOLVEMENTO REXIONAL Unha maneira de facer Europa

MARÍA DE MAEZTU

Proton beam calibration

Instituto Galego de Física de Altas Enerxías (IGFAE)

XUNTA

DE GALICIA

Y. Ayyad *et al*. Phys. Rev. Lett. 123, 082501 - Published 22 August 2019; Erratum Phys. Rev. Lett. 124, 129902 (2020)

- First direct observation of β -p in a neutron-rich nuclei.
- Branching ratio is 1.2x10⁻⁵, with 30% uncertainty... Theoretical calculations yield 8.0×10⁻⁶.
- A narrow resonance (12 keV) in ¹¹B was inferred. E = 11425(20)keV, Γ =12(5) keV, J π = 1/2;3/2+
- Decay into the continuum would be characterized by a much shorter branching ratio (10⁻¹⁰).

DE MAEZTU

Xacobeo 2021

FONDO EUROPEO DE DESENVOLVEMENTO REXIONAL Unha maneira de facer Europa

Theory tries to reproduce the result

PHYSICAL REVIEW LETTERS 124, 042502 (2020)

Convenient Location of a Near-Threshold Proton-Emitting Resonance in ¹¹B

J. Okołowicz⁶,¹ M. Płoszajczak,² and W. Nazarewicz⁶ of Nuclear Physics, Polick Academy of Sciences, Padrikowskiego 152, PL 31342 Kraké

¹Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, PL-31342 Kraków, Poland ²Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DSM—CNRS/IN2P3, BP 55027, F-14076 Caen Cedex, France ³Department of Physics and Astronomy and FRIB Laboratory, Michigan State University, East Lansing, Michigan 48824, USA

(Received 10 October 2019; published 29 January 2020)

The presence of clusterlike narrow resonances in the vicinity of reaction or decay thresholds is a ubiquitous phenomenon with profound consequences. We argue that the continuum coupling, present in the open quantum system description of the atomic nucleus, can profoundly impact the nature of near-threshold states. In this Letter, we discuss the structure of the recently observed near-threshold resonance in ¹¹B, whose very existence explains the puzzling beta-delayed proton emission of the neutron-rich ¹¹Bc.

DOI: 10.1103/PhysRevLett.124.042502

2020 Fall Meeting of the APS Division of Nuclear Physics Thursday–Sunday, October 29–November 1 2020; Time Zone: Central Time, USA

Session DD: Nuclear Theory I: Structure and Reactions 8:30 AM-10:18 AM, Friday, October 30, 2020

Chair: Charlotte Elster, Ohio University

Abstract: DD.00008 : Ab-initio analysis of β -delayed proton emission in $^{11}{\rm Be^*}$ 9:54 AM–10:06 AM

Preview Abstract

Authors:

Mack Atkinson (TRIUMF)

Petr Navratil (TRIUMF)

The exotic β -delayed proton emission is calculated in ¹¹Be from first principles using chiral two- and three-nucleon forces. To investigate the unexpectedly large branching ratio measured in [PRL 123, 082501 (2019)] we calculate the proposed $1/2^+$ proton resonance in ¹¹B using the no-core shell model with continuum (NCSMC). This timely calculation helps to resolve whether this large branching ratio is caused by unknown dark decay modes or an unobserved proton resonance.

In favor

April 2020

EPL, **130** (2020) 12001 doi: 10.1209/0295-5075/130/12001 www.epljournal.org

Assessment of the beta-delayed proton decay rate of ¹¹Be

A. VOLYA

Department of Physics, Florida State University - Tallahassee, FL 32306, USA and Cyclotron Institute, Texas A&M University - College Station, TX 77843, USA

> received 24 February 2020; accepted in final form 24 April 2020 published online 13 May 2020

PACS 21.10.Tg – Lifetimes, widths PACS 23.50.+z – Decay by proton emission PACS 21.60.Ca – Shell model

Abstract – The ¹¹Be neutron halo nucleus appears to decay into ¹⁰Be with a rate that exceeds expectations. Neutron disappearance into dark matter, beta decay of a halo neutron, or betadelayed proton decay have been offered as explanations. In this work we study the latter option; we carry out shell model calculations and sequential decay analysis examining the beta-delayed proton decay going through a resonance in ¹¹B. The narrow energy window, lack of states with sufficient spectroscopic strength, overwhelming alpha decay branch, all make reconciling the observed rate with beta-delayed proton decay difficult.

editor's choice Copyright © EPLA, 2020

Against

Xacobeo 2021

FONDO EUROPEO DE DESENVOLVEMENTO REXIONAL Unha maneira de facer Europa

← Abstract →

Comment on "Direct Observation of Proton Emission in 11 Be"

H.O.U. Fynbo,¹ Z. Janas,² C. Mazzocchi,² M. Pfützner,^{2, *} J. Refsgaard,^{3,4} K. Riisager,¹ and N. Sokołowska²

¹Institut for Fysik og Astronomi, Aarhus Universitet, DK-8000 Aarhus, Denmark
²Faculty of Physics, University of Warsaw, 02-093 Warszawa, Poland
³Department of Astronomy and Physics, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3 Canada
⁴TRIUMF, 4004 Wesbrook Mall, Vancouver BC, V6T 2A3 Canada

We argue that conclusions of [PRL 123, 082501 (2019)] are incorrect. The authors present the direct observation of beta-delayed proton emission in the beta decay of ¹¹Be. From the determined branching ratio for this

process and from the energy spectrum of emitted protons the existence of a so in ¹¹B was deduced. The given beta strength for the transition to this state is show that the combination of peak position and branching ratio is in strong sidered by the authors. Furthermore, we identify several deficiencies in the a sources of background, that could explain the error.

Eur. Phys. J. A (2020) 56:100 https://doi.org/10.1140/epja/s10050-020-00110-2 THE EUROPEAN PHYSICAL JOURNAL A

Search for beta-delayed proton emission from ¹¹Be

K. Riisager^{1,a}, M. J. G. Borge^{2,3}, J. A. Briz³, M. Carmona-Gallardo⁴, O. Forstner⁵, L. M. Fraile⁴, H. O. U. Fynbo¹, A. Garzon Camacho³, J. G. Johansen¹, B. Jonson⁶, M. V. Lund¹, J. Lachner⁵, M. Madurga², S. Merchel⁷, E. Nacher³, T. Nilsson⁶, P. Steier⁵, O. Tengblad³, V. Vedia⁴

- ¹ Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
- ² ISOLDE, EP Department, CERN, 1211 Geneve 23, Switzerland ³ Instituto de Estructura de la Materia, CSIC, 28006 Madrid, Spain
- ⁴ Grupo de Física Nuclear and IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
- ⁵ Faculty of Physics, University of Vienna, Währinger Strasse 17, 1090 Wien, Austria
- ⁶ Institutionen för Fysik, Chalmers Tekniska Högskola, 41296 Göteborg, Sweden
- 7 Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany

Received: 9 January 2020 / Accepted: 16 February 2020 / Published online: 30 March 2020 © Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2020 Communicated by Klaus Blaum

🖌 Xacobeo 2021

nucleon decay limit)

B(GT)>3 (above free single

No reliable particle

identification

FONDO EUROPEO DE DESENVOLVEMENTO REXIONAL Unha maneira de facer Europa

 $\overline{\mathbf{a}}$

Particle identification: p,d,t,alpha and ⁷Li

compare jan05 beama

2650

iplot

2700

ytbselp

ytb .

Count

2550

2600

500

Instituto Galego de Física de Altas Enerxías (IGFAE)

Xacobeo 2021

Beta-delayed proton emission in ¹¹Be: reanalysis and outlook

- A new particle ID has been developed including d, t and ⁴He energy loss curves.
- The Chi-squared test has been redefined: normalization to the number of points (it didn't actually change anything).
- Instead of projecting the calculated energy loss curves, we have projected the one of the particle to analyze into its direction.
- We have obtained a very similar branching ratio.
- This does NOT rule out the possibility of populating the IAS of ¹¹B.
- Manuscript in preparation (W. Mittig, Y. Ayyad and D. Bazin)

galicia

FONDO EUROPEO DE DESENVOLVEMENTO REXIONAL Unha maneira de facer Europa

- Direct measurement of 10Be+p at 400 keV/u at ReA3 (Y. Ayyad. Search for near-threshold narrow resonances. July 2021)
- Possibility of measuring the ¹⁰Be recoil (20 keV) with a Optical TPC for directional dark matter search.
- Development of a MTHGEM with finer pitch to increase primary luminescence in CF₄. This will enhance electron-heavy recoil rejection capabilities (production started by CERN MPGD team).
- Other opportunities: Combined measurement of heavy recoil and neutron in beta-delayed neutron emission.
- Other proton/neutron emission studies at ReA (NSCL) and at GEEL (¹⁰Be+n)

Nuclear recoil tracks with head-tail clearly resolved

galicia

Xacobeo 2021

FONDO EUROPEO DE DESENVOLVEMENTO REXIONAL Unha maneira de facer Europa

D Loomba, UNM

- We have observed the emission of protons in neutron-rich nuclei after B-decay.
- The particle identification was done using the characteristic Bragg curves for decaying particles detected in a Time Projection Chamber.
- We have obtained consistent results using two complementary methods.
- Future experiments to improve the sensitivity of our detection setup are planned.

Xacobeo 2021

FONDO EUROPEO DE DESENVOLVEMENTO REXIONAL Unha maneira de facer Europa

Thank you for your attention!

Xacobeo 2021

FONDO EUROPEO DE DESENVOLVEMENTO REXIONAL Unha maneira de facer Europa

galicia

Xacobeo 2021

Particle identification: p,d,t,alpha and ⁷Li

galicia

Xacobeo 2021

Criteria for proton event selection

- Proton beam events are used to assess the selection parameters.
- Chi2, center of gravity (shape of the pulse) and stretch factor.

EXCELENCIA MARÍA DE MAEZTU

Instituto Galego de Física de Altas Enerxías (IGFAE)

MAEZTU

Criteria for proton event selection

- Proton beam events are used to assess the selection parameters.
- Chi2, center of gravity (shape of the pulse) and stretch factor.
- This method is complementary to the one we used before: no selection in chi2.
- The energy distribution obtained in the last analysis is compatible with the published result.

Instituto Galego de Física de Altas Enerxías (IGFAE)

FONDO EUROPEO DE DESENVOLVEMENTO REXIONAL Unha maneira de facer Europa

