Clustering in light nuclei, Hoyle state, and Efimov effect

Grigory Rogachev

Cyclotron Institute and Department of Physics & Astronomy

Outline

- Cluster structure in light nuclei
- Mow data on the properties of the Hoyle state
- Search for Efimov effect in ¹²C

Mass number

3

Parity doublets

Parity doublets

Parity doublets

Clustering of bound states can be established model independently (almost) using sub-Coulomb α-transfer, e.q. (6Li,d) or (7Li,t)

$\left(C_{a^{-12}\rm C}^{^{16}\rm O(0^+)}\right)^2(10^6~{\rm fm^{-1}})$	$\left(C_{a^{-12}\mathrm{C}}^{^{16}\mathrm{O}(3^{-})} ight)^2 (10^4 \mathrm{~fm^{-1}})$	$\left(C_{a^{-12}\mathrm{C}}^{^{16}\mathrm{O}(2^+)} ight)^2$ (10 ¹⁰ fm ⁻¹)	$\big(C_{a^{-12}\rm C}^{^{16}\rm O(1^{-})}\big)^2~(10^{28}~{\rm fm^{-1}})$	Ref.	
		2.07 ± 0.80	4.00 ± 1.38	[14] N	I. Oulebsir, et al., PRC 85 , 035804 (2012).
		1.29 ± 0.23	4.33 ± 0.84	[10] C	C. Brune, et al., PRL. 83 , 4025 (1999).
		$1.96^{+1.41}_{-1.27}$	3.48 ± 2.0	[15] A	. Belhout, et al., NPA 793 , 178 (2007).
2.43 + 0.30	1.93 ± 0.25	1.48 ± 0.16	4.39 ± 0.59	This work	M.L. Avila, GR, et al., PRL 114 , 071101 (2015)

"Crystal" structure of nuclei

D. Robson, NPA 308 (1978) 381

"Crystal" structure of nuclei

Energy levels of "O with $T = 0$, $E^* < 12.6$ MeV							
Experiment *)		Theory					
J"	<i>E</i> * (MeV)	E* (MeV)	$n_2 n_3 p_L$	T _d representation			
0+	0.00	-0.15	000	A,			
0+	6.05	7.15	200	A,			
3	6.13	6.21	000	Α,			
21	6.92	6.68	100	E			
I-	7,12	6.08	011	F,			
2	8.87	(alpha-broken) ^b)		-			
1-	9.63	9.73 °)	111	F,			
2+	9.85	8.20	011	F,			
4+	10.34	10.45	000	A.			
0-	10.95	(alpha-broken)					
31	11.08	11.38	011	F,			
4+	11.10	15.47 [#])	010	F,			
01	11.26	10.19	020	A,			
2*	11.52	10.33	200	Б			
3-	11.60	11.38	011	F,			
u+	12.05	10.80 °)	300	A,			
1-] 2,44	11.25	022	F,			
2	12.53	12.52	200	E			

TABLE 3 Energy levels of ¹⁶O with T = 0, $E^* < 12.6$ MeV

D. Robson, NPA 308 (1978) 381

R. Bijker, and F. Iachello, PRL (2014) 112 (15), 152501

```
E. Epelbaum, et al.,
PRL 112 (2014) 381
```


Missing components of Td - symmetry in ¹⁶O How cluster is the

g.s. of ¹⁶O?

Experimental data is all over the place - from ANC of 14 to 4000 fm^{-1/2} !

Recent theor. SF~0.8 A. Volya, et al., PRC 91 (2015)

Where is the 3-?

Clustering in non self-conjugate nuclei

W. von Oertzen, et al., Phys. Rep. 432 (2006)

Molecular structures in ¹⁰Be

A M

⁶He+α excitation function at 90^o

⁶He+α excitation function at 160°-170°

Recent theoretical advances

A.M. Shirokov, et al., PRC 79, 014308 (2009)

Hoyle state is underbound in NCSM with JISP16 by 8 MeV!

Lattice EFT reproduces α -cluster like structures for the Hoyle and g.s. state of ¹²C

E. Epelbaum, et al., PRL 106, 192501 (2011)

¹²C - Hoyle state decays

Internal structure of the Hoyle state has an impact on this branching ratio \rightarrow How do we think about the structure of the Hoyle state? Highly 3α clustered - yes, but how so?

[1] D. J. Marín-Lambárri et al. Phys. Rev. Lett. 113, 012502 (2014)

- [2] Y. Kanada-En'yo Prog. Theor. Phys. 117, 4 (2007)
- [3] Tohsaki, Horiuchi, Schuck and Röpke, Phys. Rev. Lett. 87, 192501 (2001)

"democratic" decay mode of the Hoyle state may be a key to understanding its structure

¹²C - Hoyle state decays

Aim of this measurement to measure Hoyle decay branching ratio directly to 3α rather than via ⁸Be(g.s)

Current limits <0.019% 95% C.L. [1-3].

Factor of 10 or more improvement needed for model rejection [4], i.e. 1 in 40,000.

[1] R. Smith et al., PRL 119, 132502 (2017)
[2] D. Dell'Aquila et al., PRL 119, 132501 (2017)

[3] T.K. Rana et al., Phys. Lett. B, 793 130-133 (2019)
[4] H. Zheng et al., PLB 779 460-3 (2018)

Active Target is a convenient tool to look for rare decays

β delayed charged particle emission ¹²C - Hoyle state decays

¹²C - Hoyle state decays

Table 1

Jack

Bishop

Branching ratios for ¹²C states populated in ¹²N β^+ -decay from the present work and from KVI [3,32].

State	KVI(%)	Current work(%)
g.s	96.17 ± 0.05	_
4.44 MeV - 2 ⁺	1.90 ± 0.04	-
7.65 MeV - 0 ⁺ ₂	1.44 ± 0.03	1.58 ± 0.01 (stat.) ± 0.11 (sys.)
7.3–16.3 MeV - 3α	2.11 ± 0.03	2.54 ± 0.01 (stat.) ± 0.18 (sys.)
$0_{2}^{+}/3\alpha$	68 ± 2	62.1 ± 0.4 (stat.) ± 0.2 (sys.)

Bishop, GR, S. Ahn, et al., NIM A 964 (2020) 163773

20

¹²C - Hoyle state decays

Search for Efimov effect

- Efimov predicted [PRL 1970] infinite series of states in three boson systems, scaling as (22.7)ⁿ
- Originally, Hoyle state was considered
- Observed in ultracold Cs atoms
- It appears that Hoyle is not a Efimov state [H.]
 - Suno, et al., PRC 91, 014004 (2015)]
- Some evidence for 7.458 MeV state with alphas in mutual 92 keV resonance (Efimov?)
 [S. Zhang, et al., PRC 99, 044605 (2019)]

Search for Efimov effect

Q: Does the Efimov effect survive the Coulomb force in ¹²C? Q: Is there an additional low-lying state in 0⁺ at, or around, 7.458 MeV?

A: Populate state with β -decay and observe decay

Observe low-E decays with TexAT using betadelayed charged-particle spectroscopy technique

Observe gamma decays from decay of ¹²B from Gammasphere data [M. Munch, PRC 93, 065803 (2016)]

From combined alpha/gamma spectroscopy, Efimov state cannot exist unless feeding strength relative to Hoyle is <0.7% Hoyle (for all BR) or <0.01% for BR_y \approx 1

Efimov effect: universal scale-invariant 3-body interaction

Efimov effect: universal scale-invariant 3-body interaction

Additional low-lying 0⁺ greatly enhances triple-alpha reaction rate at 10^{7.8} K such that red giant phase is no longer possible – T. Suda et al. ApJ 741, 61 (2011)

Summary

- Clustering plays an important role in structure of light nuclei. Model independent data on clustering in g.s. are needed.
- More and the state was observed.
- Mo evidence for Efimov effect in ¹²c.

Acknowledgement

Texas A&M U: E. Aboud, S. (Tony) Ahn, M. Barbui, J. Bishop, G. Christian (now at St. Mary's U), J. Hooker (now at U of Tennessee), C. Hunt, H. Jayatissa (now at Argonne NL), R. O'Dwyer, C. Parker, E. Koshchiy, B. Roeder, M. Roosa, D. Scriven, A. Saastamoinen, S. Upadhyayula, E. Uberseder; IRFU, CEA, Saclay, France: E.C. Pollacco; Washington U.: L. Sobotka, C. Pruitt, R.J. Charity; Louisiana State University: S. O'Marley, R. Malecek; U of Birmingham: T. Kokalova-Weldon, C. Weldon

