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Timeline before |keda diagram

« 1948 Wigner: the Wigner cusp (Wigner-Eisenbud R-matrix).

« 1957, 1962: Baz’ and Inglis used a single-particle potential with a
barrier to demonstrate the enhancement of the level density
around the threshold.

« 1958 Feshbach: continuum shell model and projection formalism.

* 1961 Fano: continuum shell model; interaction aspect.

* 1961-1964 Humblet-Rosenfeld: Complex energy reaction theory

* 1964 Gel'fand: Rigged Hilbert Space.

1964 Barker: a near-threshold level coupled to reaction channels
(Lane-Thomas R-matrix 1958). Demonstrated the ¢-dependent

enhancement of the level density above the threshold.
* 1968 Berggren: completeness relations in the complex-energy
plane involving scattering states.

* 1968 lkeda diagram.
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Real-energy picture: change of asymptotics

E.P. Wigner, Phys. Rev. 73, 1002 (1948), the Wigner cusp

G. Breit, Phys. Rev. 107, 923 (1957) R-matrix approach:
A.l BaZ’_, JETP 33, 923 (1957) anomaly is a result of different
D.R. Inglis, Nucl. Phys. 30, 1 (1962) asymptotic conditions below and

F.C. Barker, Proc. Phys. Soc. 84, 681 (1964)
A.M. Lane, Phys. Lett. 33B, 274 (1970)
S.N. Abramovich et al.,Part. and Nucl. 23, 305 (1992).

above the threshold

A characteristic behavior (a cusp) of scattering and reaction cross sections of
neutral particles in the vicinity of a reaction threshold (Wigner threshold law)

Op ~ k2€—1

below the threshold

Oy k2£+ L above the threshold

For charged particles, the angular momentum dependence is smooth.
Such a behavior is seen in all related quantities (scattering matrix, spectroscopic

factors,...)
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« The threshold is a branching point (hence, nonanalytic behavior).

* The threshold effects originate in conservation of the flux.

 |f a new channel opens, a redistribution of the flux in other open channels
appears, i.e., a modification of their reaction cross-sections.

« The shape of the cusp depends strongly on the orbital angular
momentum.

a+X
01+X1 at Q1

a,+X, at
44X ALY Q;

a.+X, at Q,

With the increasing excitation energy, subsequent decay channels open up at
threshold energies Q,,, leading to a complex multichannel network of couplings. When
a new channel opens up at the threshold Q;, the unitarity imposes the appearance of
new channel couplings; hence, a modification of all eigenfunctions.
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Coupling between analog states

in (d,p) and (d,n) 4
Is..: ds/ : i
C.F. Moore et al. >
Phys. Rev. Lett. 17, 926 (1966) —
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Threshold effects in atoms and molecules
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Fig. 1. Pt", Pt*" (upper panel), and Pt*" (lower panel)

production following photoabsorption in Pt’, scaled to
measured absolute cross sections (circles). The solid
curve in the lower panel is a d-wave law. Inset: Higher

statistics scan of the region near the 4f threshold in Pt*".
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Threshold effects in hadrons and hadronic molecules

%102 Phys. Lett. B 633, 173 (2006)
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Barker, Proc. Phys. Soc. 84, 681 (1964)
R-matrix in the Lane-Thomas formulation. One level approximation

neutral particles charged particles

=0 ol 02 -02 02 04 -04 04 08
EtMew £.(MeV E (Mew)
(@ (5) (c)
L . , . . . Figure 2. Enhancement factors for channels (a) *H +d, (b) *He +d, (¢) *He +*He,
-2 -l 0 | 2 3 all with 7 = 0 and with values of a, and .2 given in the text. Full curves give
£ values of g(E), broken curves values of ¢:(E). Arrows indicate energies of observed
»2M,a} levels of ®He, SLi and °Be.

Large enhancement factor for the probability of finding the eigenenergy around

the threshold
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Complex-energy picture: threshold Gamow poles
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¢ = 0 component present ¢ >0
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Potential strength V; (Ry)
Bound state and virtual state

coalesce at the threshold forming an
exceptional point (a double pole). As the
potential strength decreases, two
Gamow resonant states are born: one
decaying and one capturing.
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Resonant states of the NN system

T=0
* np: bound state (deuteron), k=+i0.2315 fm-?

T=1
« np: antibound state, k=—i0.044 fm-
 nn: antibound state, k=—i0.0559(33) fm-1 [Phys. At.
Nucl. 76, 684 (2013)]
 pp: threshold resonance, k=(0.0647-i0.0870) fm-’
[Phys. Rev. Lett. 45, 427 (1980)]
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K. Ikeda, N. Takigawa, and H. Horiuchi, Prog. Theor. Phys. Suppl. E68, 464 (1968
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What can and what cannot be found in Prog. Theor. Phys. Suppl. E68, 464 (1968)?

The paper does contain:

« Qualitative discussion of the relation between the molecule-like structures and
the related dissociation energy.

« Arguments based on energetics: at higher energies, the nucleus becomes less
compacts and clusters can develop easier (at low energies, one is dealing with
close-packed/dense configurations). The Puli principle acting in the tightly-bound
clusters acts against a “dissolution”.

« Spectroscopic arguments for the presence of molecular-like structure in 4n
nuclei, e.g., rotational bands.

The paper dos not contain:
« Any quantitative arguments/theory.

« Any discussion about the special role of the dissociation thresholds.
« Any discussion about the origin of cluster states around the thresholds.
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The origin of nuclear clustering: collective effect due
to the continuum coupling

HC-trl ------ 18721
_________ 15957 J. Okotowicz, M. Ptoszajczak, WN,
11
B+p Fortschr. Phys. 61, 66 (2013)
and Prog. Theor. Phys. Supplement
9 " 196, 230 (2012); Acta. Phys. Pol.
_ 0 7654
B9 =0ty 45, 331 (2014)
*Be +a
(Y
+ 4439
2 . Litn___ 25,/
D pininininininke 300
0 ® vl 2 \¥
12C llLi

The clustering is the generic near-threshold phenomenon in open quantum
system which does not originate from any particular property of nuclear
forces or any dynamical symmetry of the nuclear many-body problem

Specific features:

- energetic order of particle emission thresholds

- absence of stable cluster entirely composed of like nucleons
I ————
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SMEC description

The scattering environment is provided by one-nucleon decay channels. The Hilbert
space is divided into two orthogonal subspaces Qg and @, containing 0 and 1
particle in the scattering continuum, respectively.

Energy-dependent effective Hamiltonian (E is the scattering energy):
H(E) — HQOQO + WQOQO (E)

!

standard SM (CQS) Hamiltonian energy-dependent continuum coupling term

WQOQO (E) — HQle G(Qt) (E)Hglgo

one-nucleon Green's function
coupling terms between subspaces Qg and Q;

WQOQO (E) ~ V02h(E)

Vo - the continuum coupling constant
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Appearance of the aligned state
SMstates |1);) — |P;) Z bji|i)

SMEC states

Continuum coupling correction to SM eigenstates

E$) (B) = (3|H — Ho|®,) ~ VE{(®;|h(E)|D,)

BG: ]

corr

—E—>

ilo i, p_pm

Interaction through the continuum leads to the collectivization of SM
eigenstates and formation of the aligned SMEC eigenstate which couples
strongly to the decay channel and carries many of its characteristics.
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Mixing of SM wave functions via the continuum

* The mixing of eigenfunctions (avoided crossing) is caused

EpP K} 19235[227]
by a nearby exceptional point of the complex-extended 3 3 19069[271]
: : R TR e o 18900
Hamiltonian
* Exceptional points are generic features of open quantum
systems. iy 18150[138]
* The configuration mixing of resonances is characterized
by lines €, (E)=E, (E) of coalescing eigenvalues ' 17640[10.7]
(exceptional threads) of the complex-extended CSM s
: : Li+p------- 17250
Hamiltonian.
16922|74)
o . EP% A
Nuclear clustering is a consequence of the collective " 16626(108]

coupling of SM states via the decay channel which

leads to the formation of the OQS state (aligned

state). This state captures most of the continuum

coupling and carries many characteristics of the

decay channel. Cluster states may appear in the

narrow energy window around the point of maximum

continuum coupling. The continuum-coupling ‘ A
correlation energy and collectivity of the aligned state *He+"He -
is reduced with increasing Coulomb barrier. *Be

91.8[0.0068]
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Many experimental examples!

* Excited 5/2* state in 13F located 0.48(19) MeV above the threshold
for proton decay to the second 2* state in *20: Phys. Rev. Lett. 126,

132501 (2021)
e Excited states of 1*O: Phys. Rev. C 100, 064305 (2019)

« Excited 1/2- state in °F located 0.12 MeV above the 2p

threshold to SN
« Excited 5/2- proton-emitting state in '"Ne

1/2° E=3487(40)

1/2* E=0
= 660(20)

Yo+p -1270
ISF
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Near-Threshold Proton-Emitting Resonance in !B

Experiment: Y. Ayyad et al.,
Phys. Rev. Lett. 123, 082501
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Continuum mixing and EM transitions
M. Ptoszajczak and J. Okotowicz, J. Phys.Conf. Ser. 1643, 012156 (2020)
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The near-threshold state 2*, at 8.318 MeV is located 142 keV above the one-
neutron emission threshold and has a total width 3.4 keV. Significant enhancement
when compared to shell-model values!
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Astrophysical relevance

Near-threshold cluster resonances are important astrophysically
Many examples, see, e.g., M. Wiescher et al. Eur. Phys. J. A57, 24 (2021)

Near-threshold a-cluster states in 1%11B, 145N, which enhance the reaction rates for a-capture
reactions on lithium and boron isotopes
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--—- Resonances + EC upper limit
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Fig. 1 Estimate of the ®Li(c, y)!°B S-factor based on level parameters
from the compilation [60] (red solid line). An estimate that includes an
upper limit for the direct capture is also shown (blue dashed line)
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Phys. Rev. C 101, 045802, (2020)

« Drotleff et al. (1993)

107k = Heil etal. (2008) _
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FIG. 8. § factors (solid lines) and their corresponding range of
uncertainty (bounded by the dashed lines) for the “C(a, n)'°0O
reaction using the C?ofLa Cognata et al. [31] (blue) and Avila et al.
[33] (red). The S factor with no near-threshold state contribution is
shown by the gray dashed-dotted line. The black arrow indicates the
energy range of astrophysical interest.
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Open problems in the theory of nuclear open quantum systems
N. Michel et al., J. Phys. G 37, 064042 (2010)

* What is the interplay between mean field and correlations in
open quantum systems?

* What are properties of many-body systems around the reaction
threshold?

* What is the origin of cluster states, especially those of
astrophysical importance?

* What should be the most important steps in developing the
theory that will treat nuclear structure and reactions
consistently?

* What is Quantum Mechanics of open quantum systems?
* How are effective interactions modified in open quantum
systems?

in collaboration with M. Ptoszajczak, N. Michel, J. Okotowicz, S. Wang, J Wylie...
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