Heavy flavor hadronization with DAB-MOD

Roland Katz (SUBATECH, France) Project developed at the University of São Paulo (Brazil) with C. Prado, J. Noronha-Hostler, J. Noronha, M. Munhoz, A. Suaide

h ECT* Heavy flavor transport 2021 – Online – 28/04/2021

DAB-MOD: basics

"D and B mesons - modular code"

Heavy quarks evolve on the top of 2d+1 bulk profiles

Transport:

- parametric energy loss
 - relativistic Langevin

Hadronization:

- fragmentation
 - coalescence

No hadronic rescattering

<u>Analyses</u>: -- R_{AA} vs. v₂ -- anisotropies with cumulants -- system size scan --

Hadronization

Each heavy quark propagates until it reaches a cell where $T \le T_d = 160$ MeV the « decoupling temperature »

We use a hybrid coalescence + fragmentation model

inspired by Cao, Qin, and Bass, Phys. Rev. C92, 024907 (2015)

Fragmentation

Peterson fragmentation function

Peterson, Schlatter, Schmitt, and Zerwas, Phys. Rev. D27, 105 (1983)

We use
$$f(z) \propto rac{1}{z(1-1/z-\epsilon_{
m Q}/(1-z))^2}$$

To obtain the fraction z of the heavy quark $E_Q + p_Q$ taken by the daughter hadron $E_H + p_H = z(E_Q + p_Q)$

Parameters ε_c and ε_b chosen such as to reproduce the D⁰ and B mesons FONLL spectra in pp

Dover, Heinz, Schnedermann, and Zimany, Phys. Rev. C44, 1636 (1991)

Heavy meson « M »

Coalescence probability $P_{coal}[q, Q \rightarrow M]$ that a heavy meson of momentum p_M is formed by coalescence of a heavy quark (p_Q) and a light quark (p_q)

$$P_{\text{coal}}[q, Q \to M](\mathbf{p}_Q, \mathbf{u}) = N \int d^3 \mathbf{p}_q f_M(\mathbf{p}_q, \mathbf{p}_Q) \ n_q(\mathbf{p}_q, \mathbf{u}, T_d) \,\delta(\mathbf{p}_M - \mathbf{p}_q - \mathbf{p}_Q),$$

global normalization factor

probability density: projection of the two quark states onto the meson state

momentum distribution of the light quarks at hadronization

Dover, Heinz, Schnedermann, and Zimany, Phys. Rev. C44, 1636 (1991)

Heavy meson « M »

Coalescence probability $P_{coal}[q, Q \rightarrow M]$ that a heavy meson of momentum p_M is formed by coalescence of a heavy quark (p_Q) and a light quark (p_q)

$$P_{\text{coal}}[q, Q \to M](\mathbf{p}_Q, \mathbf{u}) = N \int d^3 \mathbf{p}_q f_M(\mathbf{p}_q, \mathbf{p}_Q) n_q(\mathbf{p}_q, \mathbf{u}, T_d) \delta(\mathbf{p}_M - \mathbf{p}_q - \mathbf{p}_Q),$$

Fermi-Dirac distribution of the light quarks in medium cell frame

$$n_q(\mathbf{p}_q, \mathbf{u}, T_d) = \frac{g_q}{e^{\sqrt{\mathbf{p}_q^{\text{cell}^2} + m_q^2}/T_d} + 1} = \frac{g_q}{e^{p_q \cdot u/T_d} + 1},$$
Local medium light quark momentum cell velocity in medium cell frame

 $\Rightarrow P_{coal}[q,Q \rightarrow M]$ depends on the local flow

Dover, Heinz, Schnedermann, and Zimany, Phys. Rev. C44, 1636 (1991)

Heavy meson « M »

Coalescence probability $P_{coal}[q, Q \rightarrow M]$ that a heavy meson of momentum p_M is formed by coalescence of a heavy quark (p_Q) and a light quark (p_q)

$$P_{\text{coal}}[q, Q \to M](\mathbf{p}_Q, \mathbf{u}) = N \int d^3 \mathbf{p}_q f_M(\mathbf{p}_q, \mathbf{p}_Q) n_q(\mathbf{p}_q, \mathbf{u}, T_d) \,\delta(\mathbf{p}_M - \mathbf{p}_q - \mathbf{p}_Q),$$

Probability density: projection of the two quark states onto the meson state

$$f_M(\mathbf{p}_q, \mathbf{p}_Q) = g_M h_M \frac{(2\sqrt{\pi}\sigma)^3}{(2\pi)^3} e^{-\mathbf{p}_{rel}^2 \sigma^2},$$
 (Only s waves)

relative momentum of the two quarks in the center-of-mass frame simple harmonic oscillator model for all the meson states

Dover, Heinz, Schnedermann, and Zimany, Phys. Rev. C44, 1636 (1991)

Heavy meson « M »

Coalescence probability $P_{coal}[q, Q \rightarrow M]$ that a heavy meson of momentum p_M is formed by coalescence of a heavy quark (p_Q) and a light quark (p_q)

$$P_{\text{coal}}[q, Q \to M](\mathbf{p}_Q, \mathbf{u}) = N \int d^3 \mathbf{p}_q f_M(\mathbf{p}_q, \mathbf{p}_Q) n_q(\mathbf{p}_q, \mathbf{u}, T_d) \,\delta(\mathbf{p}_M - \mathbf{p}_q - \mathbf{p}_Q),$$

Probability density: projection of the two quark states onto the meson state

$$f_M(\mathbf{p}_q, \mathbf{p}_Q) = g_M h_M \frac{(2\sqrt{\pi}\sigma)^3}{(2\pi)^3} e^{-\mathbf{p}_{rel}^2 \sigma^2},$$
 (Only s waves)
usual color-spin-isospin
statistical factor New "thermal" factor added by hand
(explained in few slides)

Dover, Heinz, Schnedermann, and Zimany, Phys. Rev. C44, 1636 (1991)

Heavy baryon « B »

Coalescence probability $P_{coal}[q_1,q_2,Q \rightarrow B]$ that a heavy baryon of momentum p_B is formed by coalescence of a heavy quark (p_Q) and two light quarks (p_{q1} and p_{q2})

> probability density: combining the two light quarks and the heavy quark (includes the new thermal factors)

$$\begin{split} & P_{\text{coal}}[q_1, q_2, Q \to B](\mathbf{p}_Q, \mathbf{u}) = N \int d^3 \mathbf{p}_{q_1} d^3 \mathbf{p}_{q_2} f_B(\mathbf{p}_{q_1}, \mathbf{p}_{q_2}, \mathbf{p}_Q) \; n_{q_1}(\mathbf{p}_{q_1}, \mathbf{u}, T_d) \\ & \times n_{q_2}(\mathbf{p}_{q_2}, \mathbf{u}, T_d) \, \delta(\mathbf{p}_B - \mathbf{p}_{q_1} - \mathbf{p}_{q_2} - \mathbf{p}_Q), \end{split}$$

Footnote

About « combining order invariance » in baryonic case

The probability density
for baryons writes:
in baryon center of mass frame
with
$$\mathbf{p}_{rel1} = \frac{m_{q_2}\mathbf{p}'_{q_1} - m_{q_1}\mathbf{p}'_{q_2}}{m_{q_1} + m_{q_2}} \qquad \mathbf{p}_{rel2} = \frac{m_Q(\mathbf{p}'_{q_1} + \mathbf{p}'_{q_2}) - (m_{q_1} + m_{q_2})\mathbf{p}'_Q}{m_{q_1} + m_{q_2} + m_Q},$$

With these formulas one can combine the 3 quarks in any order and get the same result

But in Cao, Qin, and Bass, Phys. Rev. C92, 024907 (2015) : m_i -> E_i

$$\mathbf{p}_{\text{rel1}} = \vec{q}_1 \equiv \frac{E_2^{\text{cm}} \vec{p}_1^{\text{cm}} - E_1^{\text{cm}} \vec{p}_2^{\text{cm}}}{E_1^{\text{cm}} + E_2^{\text{cm}}},$$

$$\mathbf{p}_{\text{rel2}} = \vec{q}_2 \equiv \frac{E_3^{\text{cm}} (\vec{p}_1^{\text{cm}} + \vec{p}_2^{\text{cm}}) - (E_1^{\text{cm}} + E_2^{\text{cm}}) \vec{p}_3^{\text{cm}}}{E_1^{\text{cm}} + E_2^{\text{cm}} + E_3^{\text{cm}}},$$

With these formulas: $P_{coal}[q_1,q_2,Q \rightarrow B]$ is different if we combine the two light quarks first or the heavy quark and a light quark first

=> Not invariant with combining order !

(Why one type of combination should be better than the other ?)

"Thermal" factors h_M and h_B

Problematic:

Within the "basic" coalescence model (i.e. without the h_M and h_B factors): the prompt D⁺/D⁰ and D^{*+}/D⁰ ratios are only based on the color-spin-isospin factors, with the rest of the probabilities canceling out, e.g.

$$\frac{D^{+}_{\text{prompt}}}{D^{0}_{\text{prompt}}} = \frac{D^{+}_{\text{dir.}} + D^{*+}_{\text{dir.}} Br(D^{*+} \to D^{+})}{D^{0}_{\text{dir.}} + D^{*0}_{\text{dir.}} Br(D^{*0} \to D^{0}) + D^{*+}_{\text{dir.}} Br(D^{*+} \to D^{0})} = \frac{g_{\text{D}} + 0.307g_{\text{D}^{*}}}{g_{\text{D}} + 1.677g_{\text{D}^{*}}} \approx 0.32$$

With: - prompt = with feed downs included - « dir. » = direct production from c - D⁰, D⁺ \rightarrow g_D = 1/36 - D^{*0}, D^{*+} \rightarrow g_{D*} = 1/12 ≠ experimental value
 ~ 0.45 - 0.50 !!
(seems universal to pp, pA, AA:
 same underlying mechanism ?)

Should we consider different radiuses or the differences in energy to form excited states ?

"Thermal" factors h_M and h_B

<u>Proposition:</u> Adding by hand new "thermal" factors "exp[- ($m_{excited} - m_{ground}$) /T_d]" between energy states of equal quark flavor content e.g.: $h_{D^{*0}} = exp[- (m_{D^{*0}} - m_{D^0}) /T_d]$

=> not only spin hierarchy but also mass hierarchy between different energy states of equal flavor content

Approximate values	Experimental	"basic"	With extra
at low $p_{\rm T}$	[95, 100, 124–127]	coalescence	thermal factors
direct $c \rightarrow D^0$	in pp: 0.17	0.06	0.10
prompt $c \to D^0$	in pp: 0.55	0.36	0.32
D^+/D^0	0.45 - 0.50	0.32	0.45
D^{*+}/D^{0}	0.40 - 0.50	0.5	0.4
$\mathrm{D}_{s}^{+}/\mathrm{D}^{0}$	0.35	0.31	0.34
D_s^+/D^+	0.75	0.99	0.76
Λ_c^+/D^0	@ RHIC: 1.2 - @ LHC: 0.7	0.74	0.94

TABLE III. The approximate low $p_{\rm T}$ branching ratios or prompt hadronic ratios obtained with different configurations of the coalescence model (using a typical $|\mathbf{u}| \approx 0.6$) compared to the low $p_{\rm T}$ experimental data in AA collisions (or pp collisions if specified).

=> Better matches !

"Thermal" factors h_M and h_B

Additional positive effects:

Natural justification for the non consideration of more excited states (such as the J = 2 mesons and J = 5/2 baryons) and antisymmetric states (such as the J^P = 0⁺ mesons and J^P = 1/2⁻ baryons) -> they are now suppressed by their larger mass

Notes:

Motivation for these thermal factors : purely phenomenological,
 i.e. to improve the ratio fits and the coalescence probabilities
 Need for theoretical justification

- Needs for further tests (e.g. Λ_c^+/D^0 (p_T) ratio, now limited by our fragmentation)

- Alternative to thermal factor ? We tried instead to use larger radiuses => larger widths σ for the excited states \rightarrow not good

$$f_M(\mathbf{p}_q, \mathbf{p}_Q) = g_M h_M \frac{(2\sqrt{\pi}\sigma)^3}{(2\pi)^3} e^{-\mathbf{p}_{rel}^2 \sigma^2}, \qquad \sigma = 1/\sqrt{\mu\omega}$$

Global normalization factor N

We consider all the meson and baryon symmetric ground and first excited states

Higher excited states and P states not included

Coalescence

Global normalization factor N

N is often chosen such that

 $P_{coal}[c \rightarrow any hadron](p_Q=0) = 1$ assuming no fragmentation when $p_Q=0$

In Cao, Qin, and Bass, Phys. Rev. C92, 024907 (2015):

We assume instead that $P_{coal}[c \rightarrow any hadron](\mathbf{p}_Q, \mathbf{u}) = 1$ when $\mathbf{v}_Q = \mathbf{u}$ i.e. when the heavy quark is moving together with the light quarks surrounding it.

Coalescence

- Larger medium cell velocity $|\mathbf{u}|$ tends to shift the maximum of P_{coal} toward larger $|\mathbf{p}_Q|$.
- An increasing $\theta = |(\hat{v}_{Q}, \hat{u})|$ tends to lower the P_{coal} and restrict the coalescence to heavy quarks with lower $|\mathbf{p}_{Q}|$.
- With increasing |u| the meson production from coalescence tends to decrease whereas the baryon production increases

Hadronization

Monte-Carlo procedure to decide if fragmentation or coalescence and into which meson/baryon.

If coalescence: hadron momentum given by the heavy-light quark system $\mathbf{p}_{Q} + \mathbf{p}_{q}$.

Hadronization

Originates from the combination of Thermal factors: reduce the P_{coal} of excited states
 Global normalization factor N such as

 $P_{coal}[c \rightarrow any hadron](\mathbf{p}_Q, \mathbf{u}) = 1 \text{ when } \mathbf{v}_Q = \mathbf{u}$

Mechanically increases the production of ground states when coalescence probability is significant

R_{AA}

Thermal factors => smaller suppression at low pT

Fragmentation + Coalescence = much better than only fragmentation

Coalescence effects extend up to 8 GeV

19 Ref data: arXiv:1708.04962

V₂

Ref data: arXiv:1708.03497

V₃

Coalescence effects extend up to 15 GeV

Thank you !

All details and analysis on hadronization in DAB-MOD: Katz et al., Phys. Rev. C 102, 024906 (2020) [1906.10768]

Roland Katz – ECT* HF transport in QCD matter – 28/04/2021

Back up

Experimental meson ratios

DAB-MOD: heavy quarks

Initial conditions

- Large oversampling of the HQs (statistics)
- Spatial -> following initial bulk densities; p_T -> **FONLL spectra**
- No shadowing or cold nuclear matter effects

Transport

- Parametric Energy loss models

$$\frac{dE}{dx} = -f(T, p, x) \,\Gamma_{\text{flow}}$$

Where Γ_{flow} : takes into account the boosts

Parametrizations $f(T,p,x)=\alpha$ or $f(T,p,x)=\xi T^2$ -> ${\rm R}_{\rm AA}$ trends ok

or

- Relativistic Langevin models $dp_i = -\Gamma(\vec{p})p_i dt + \sqrt{dt}\sqrt{\kappa}\rho_i$

Two different parametrizations:

- "M&T": from Moore and Teaney, QCD+HTL model $\,D \propto 1/(2\pi T)$
- "G&A" : from Gossiaux and Aichelin, QCD+HTL model

with running coupling and optimized propagator.

DAB-MOD: heavy quarks

Hadronization

- **Decoupling** T_d : 120 < T_d < 160 MeV -> hadronization uncertainties
- **Fragmentation**: Peterson function $f(z) \propto [z(1 1/z \epsilon_Q/(1 z))]^{-1}$ to obtain the fraction z of the HQ $E_Q + p_Q$ taken by the hadron $E_H + p_H$

with or without

Light-heavy quark coalescence

- Inspired by Dover et al.: instantaneous projection of states
- Coalescence proba. function of $\vec{p_Q}$, local flow & angle between
- To better fit the observed heavy hadron ratios, we included: thermal factors "exp[-(m_{excited}-m_{ground})/T_d]" between energy states of equal quark content => not only spin but also mass hierarchy between energy states of a hadron type

Final stages

- No final hadronic re-scattering

Details in: arXiv:1906.10768