Inelastic radiative process in linearized Boltzmann transport model

Guang-You Qin

秦广友

Central China Normal University (CCNU)

华中师范大学

Heavy-Flavor Transport in QCD Matter 26-30 April 2021

Outline

- Introduction
- Medium-induced gluon radiation in HT
- Implementation of radiative energy loss in LBT
- Flavor hirarchy of parton energy loss and jet quenching (R_{AA})
- Outlook: beyond collinear expansion and soft gluon emission limit

Elastic and inelastic interactions

 $p_1 \cdot \partial f_1(x_1, p_1) = E_1(C_{el}[f_1] + C_{inel}[f_1])$

Medium-induced gluon radiation in HT

• In higher twist formalism, the gluon radiation is calculated in the framework of DIS off a large nucleus

• The medium-induced gluon radiation spectrum (after collinear expansion)

$$\frac{dN_g}{dxdk_{\perp}^2dt} = \frac{2\alpha_s C_A P(x)}{\pi k_{\perp}^4} \hat{q} \left(\frac{k_{\perp}^2}{k_{\perp}^2 + x^2 M^2}\right)^4 \sin^2\left(\frac{t - t_i}{2\tau_f}\right)$$

• Guo, Wang, PRL 2000, Majumder, PRC 2012; Zhang, Wang, Wang, PRL 2004

Implementation of inelastic radiation in LBT

• Average number of radiated gluons in Δt :

$$\langle N_g \rangle (E, T, t, \Delta t) = \Gamma_g \Delta t = \Delta t \int dx \, dk_\perp^2 \frac{dN_g}{dx \, dk_\perp^2 dt}$$

Poisson distribution for the number *n* of radiated gluons during Δt:

$$P(n) = \frac{\langle N_g \rangle^n}{n!} e^{-\langle N_g \rangle}$$

• Probability of inelastic interaction during Δt:

$$P_{inel} = 1 - e^{-\langle N_g \rangle}$$

 Zhu, Wang, PRL 2013; He, Luo, Wang, Zhu, PRC 2015; Cao, Tan, GYQ, Wang, Phys.Rev.C 94 (2016) 1, 014909; Phys.Lett.B 777 (2018) 255-259

Model implementation of inelastic radiation

- Calculate $\langle N_g \rangle$ and P_{inel}
- If gluon radiation happens, sample n gluons from Poisson distribution
- Sample E&p of radiatied gluons using the differential radiation spectrum
- First do $2 \rightarrow 2$ process, then adjust *E*&*p* of 2 + nfinal partons to guarantee *E*&*p* conservation for $2 \rightarrow 2 + n$ process

 $\langle E_g \rangle$ from our MC simulation agrees with the semi-analytical result.

Combine elastic & inelastic

• Total probability:

 $P_{tot} = 1 - e^{-\Gamma_{tot}\Delta t} = P_{el} + P_{inel} - P_{el}P_{inel}$

- Pure elastic scattering without gluon radiation: $P_{el}(1 P_{inel})$
- Inelastic scattering: P_{inel}
- Use P_{tot} to determine whether jet parton interact with thermal medium
- If jet-medium interaction happens, then determine whether it is pure elastic or inelastic
- Then simulate $2 \rightarrow 2$ or $2 \rightarrow 2 + n$ process

Flavor hierachy of parton energy loss in LBT

Zhu, Wang, PRL 2013; He, Luo, Wang, Zhu, PRC 2015; Cao, Luo, GYQ, Wang, PRC 2016 ; PLB 2018; etc.

Flavor hierarchy of jet quenching

Now focus on: $p_T > 6-8 \text{ GeV/c}$

Large p_T hadron production in pp collisions

pQCD factorization: Large- p_T processes may be factorized into long-distance pieces in terms of PDF & FF, and short-distance parts describing hard interactions of partons.

Large p_T hadron production in AA collisions

Hadron productions in pp collisions

Xing, Cao, GYQ, Xing, PLB 2020

Based on B. Jager, A. Schafer, M. Stratmann, and W. Vogelsang, Phys. Rev. D67, 054005 (2003) F. Aversa, P. Chiappetta, M. Greco, and J. P. Guillet, Nucl. Phys. B327, 105 (1989).

Charged hadron R_{AA}

- $\begin{array}{c} \cong \\ 0.6 \\ 0.4 \\ 0.2 \\ 0 \\ 10 \end{array}$
- Quark-initiated hadrons have less quenching effects than gluon-initiated hadrons.
- Combining both quark and gluon fragmentations, we obtain a nice description of charged hadron R_{AA} over a wide range of p_T .

Xing, Cao, GYQ, Xing, PLB 2020

- D mesons produced from charm quark fragmentation have less quenching than D mesons from gluon fragmentation.
- Combining both charm quark and gluon contributions, we obtain successful description of D R_{AA}.

Xing, Cao, GYQ, Xing, PLB 2020

Radiative and collisional contributions

• Radiative E loss provides more dominant contributions to R_{AA} , collisional E loss also has sizable contributions to R_{AA} at not-very-high p_T regime and diminishes with increasing p_T .

Xing, Cao, GYQ, Xing, PLB 2020

Flavor hierarchy of jet quenching

 At p_T > 30-40 GeV, B mesons will also exhibit similar suppression effects to charged hadrons and D mesons, which can be tested by future measurements.

Xing, Cao, GYQ, Xing, PLB 2020

Beyond collinear expansion & soft gluon emission limit

Medium-induced gluon emission beyond collinear expansion & soft gluon emission limit with transverse & longitudinal scatterings for massive quarks

Only transverse scatterings

• Modeling the traversed nuclear medium by heavy static scattering centers (only transverse scatterings)

$$\begin{split} \frac{dN_g^{\text{med}}}{dyd^2\mathbf{l}_{\perp}} &= \frac{\alpha_s}{2\pi^2} P(y) \int dZ_1^- \int d^2\mathbf{k}_{1\perp} \frac{dP_{\text{el}}}{d^2\mathbf{k}_{1\perp}dZ_1^-} \\ &\times \left\{ C_A \left[2 - 2\cos\left(\frac{(\mathbf{l}_{\perp} - \mathbf{k}_{1\perp})^2 + y^2M^2}{l_{\perp}^2 + y^2M^2} \frac{Z_1^-}{\tilde{\tau}_{\text{form}}^-}\right) \right] \times \left[\frac{(\mathbf{l}_{\perp} - \mathbf{k}_{1\perp})^2 + \frac{y^4}{1+(1-y)^2}M^2}{\left[(\mathbf{l}_{\perp} - \mathbf{k}_{1\perp})^2 + y^2M^2 \right]^2} \right] \\ &- \frac{1}{2} \frac{\mathbf{l}_{\perp} \cdot (\mathbf{l}_{\perp} - \mathbf{k}_{1\perp}) + \frac{y^4}{1+(1-y)^2}M^2}{\left[(\mathbf{l}_{\perp} - \mathbf{k}_{1\perp})^2 + y^2M^2 \right]} - \frac{1}{2} \frac{(\mathbf{l}_{\perp} - \mathbf{k}_{1\perp}) \cdot (\mathbf{l}_{\perp} - y\mathbf{k}_{1\perp}) + \frac{y^4}{1+(1-y)^2}M^2}{\left[(\mathbf{l}_{\perp} - \mathbf{k}_{1\perp})^2 + y^2M^2 \right]} \left[\mathbf{l}_{\perp} - \mathbf{k}_{\perp} \right]^2 + \frac{y^4}{1+(1-y)^2}M^2}{\left[(\mathbf{l}_{\perp} - \mathbf{k}_{\perp})^2 + y^2M^2 \right]} - \frac{1}{2} \frac{(\mathbf{l}_{\perp} - \mathbf{k}_{1\perp}) \cdot (\mathbf{l}_{\perp} - y\mathbf{k}_{1\perp})^2 + y^2M^2}{\left[(\mathbf{l}_{\perp} - \mathbf{k}_{\perp})^2 + y^2M^2 \right]} - \frac{\mathbf{l}_{\perp}^2 + \frac{y^4}{1+(1-y)^2}M^2}{\left[(\mathbf{l}_{\perp} - \mathbf{k}_{\perp})^2 + y^2M^2 \right]} - \frac{\mathbf{l}_{\perp}^2 + \frac{y^4}{1+(1-y)^2}M^2}{\left[(\mathbf{l}_{\perp} - \mathbf{k}_{\perp})^2 + y^2M^2 \right]} - \frac{\mathbf{l}_{\perp}^2 + \frac{y^4}{1+(1-y)^2}M^2}{\left[(\mathbf{l}_{\perp} - \mathbf{k}_{\perp})^2 + y^2M^2 \right]} - \frac{\mathbf{l}_{\perp}^2 + \frac{y^4}{1+(1-y)^2}M^2}{\left[(\mathbf{l}_{\perp} - \mathbf{k}_{\perp})^2 + y^2M^2 \right]^2} \right] \\ + C_F \left[\frac{\left(\mathbf{l}_{\perp} - y\mathbf{k}_{1\perp} \right)^2 + \frac{y^4}{1+(1-y)^2}M^2}{\left[(\mathbf{l}_{\perp} - y\mathbf{k}_{\perp})^2 + y^2M^2 \right]^2} - \frac{\mathbf{l}_{\perp}^2 + \frac{y^4}{1+(1-y)^2}M^2}{\left[\mathbf{l}_{\perp}^2 + y^2M^2 \right]^2} \right] \right\}. \end{split}$$

Soft gluon emission approximation

• Further taking soft gluon emission approximation $y^2 M \ll y M \sim l_{\perp} \sim k_{1\perp}$:

$$\begin{aligned} \frac{dN_g^{\text{med}}}{dyd^2\mathbf{l}_{\perp}} &= \frac{\alpha_s}{2\pi^2} P(y) \int dZ_1^- \int d^2\mathbf{k}_{1\perp} \frac{dP_{\text{el}}}{d^2\mathbf{k}_{1\perp} dZ_1^-} \times C_A \left[2 - 2\cos\left(\frac{\left(\mathbf{l}_{\perp} - \mathbf{k}_{1\perp}\right)^2 + y^2 M^2}{l_{\perp}^2 + y^2 M^2} \frac{Z_1^-}{\tilde{\tau}_{\text{form}}}\right) \right] \\ & \times \left[\frac{\left(\mathbf{l}_{\perp} - \mathbf{k}_{1\perp}\right)^2}{\left[\left(\mathbf{l}_{\perp} - \mathbf{k}_{1\perp}\right)^2 + y^2 M^2\right]^2} - \frac{\mathbf{l}_{\perp} \cdot \left(\mathbf{l}_{\perp} - \mathbf{k}_{1\perp}\right)}{[l_{\perp}^2 + y^2 M^2]} \frac{1}{\left[\left(\mathbf{l}_{\perp} - \mathbf{k}_{1\perp}\right)^2 + y^2 M^2\right]} \right]. \end{aligned}$$

- This agrees with the DGLV first-order-in-opacity formula.
- Jet transport parameter is related to the differential elastic scattering rate as follows:

$$\hat{q}_{lc} = \frac{d\langle k_{1\perp}^2 \rangle}{dL^-} = \int \frac{dk_1^- d^2 \mathbf{k}_{1\perp}}{(2\pi)^3} \mathbf{k}_{1\perp}^2 \mathcal{D}(k_1^-, \mathbf{k}_{1\perp}) = \int \frac{d^2 \mathbf{k}_{1\perp}}{(2\pi)^2} \mathbf{k}_{1\perp}^2 \mathcal{D}_{\perp}(\mathbf{k}_{1\perp}) = \int d^2 \mathbf{k}_{1\perp} \mathbf{k}_{1\perp}^2 \rho^- \frac{d\sigma_{\rm el}}{d^2 \mathbf{k}_{1\perp}}$$

Summary

- Medium-induced gluon radiation in HT
- Implementation of radiative energy loss in LBT
- Flavor hirarchy of parton energy loss and jet quenching
- HT beyond collinear expansion and soft gluon emission limit

Gluon emission in vacuum

