

A data-driven analysis for the heavy quark diffusion coefficients

Wenkai Fan, Yingru Xu, Steffen A. Bass

Duke University

This work has been supported by the U.S Department of Energy under grand DE-FG02-05ER41367. Computational resources were provided by the Open Science Grid (OSG) and NERSC. This work has also been supported by STRONG-2020 "The strong interaction at the frontier of knowledge: fundamental research and applications" which received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093.

- Soft matter: T_RENTo
 - Entropy deposition proportional to empirical parametrization: $\frac{ds}{dy}|_{\tau=\tau_0} \propto \sqrt{T_A T_B}$, T_A (nucleon thickness function)
- Heavy quarks
 - Position space: binary collision density
 - Momentum space: (initial hard scattering)
 Fixed-Order + Next-to-Leading Log (FONLL)

J.S.Moreland, J.Bernhard, and S.A.Bass, Phys.Rev.C 92, 011901(2015)

Soft medium evolution

- Event-by-event (2+1)D viscous hydrodynamic model: iEbE-VISHNU
 - Shear and bulk viscosities: $\eta/s(T), \zeta/s(T)$

H.Song and U.W.Heinz, Phys.Rev.C 77, 064901(2008)

 All the soft medium related parameters are calibrated on soft hadronic observables by Bayesian analysis
 J.Bernhard, J.S.Moreland, S.A.Bass, J.Liu, and U.Heinz Phys.Rev.C 94, 024907(2015)

Heavy quark in-medium transport

- Model A: improved Langevin model
- Model B: Lido linearized Boltzmann + diffusion model

Best fit of bulk medium observables

Hadronization/particalization

- Soft medium: particlization (hydrodynamic model \rightarrow hadron gas) at $T_{\rm switch}$
- $c \rightarrow D$ -meson, charmed baryons at $T_c = 154$ MeV: combined model of recombination and fragmentation

S. A. Bass et al., Prog. Part. Nucl. Phys. 41 (1998)

M. Bleicher et al. J. Phys. G: Nucl. Part. Phys. 25 (1999)

- UrQMD: solving the Boltzmann equation of hadron scattering
- D-mesons scatter with π , ρ : $\pi D \rightarrow \pi D, \pi D^* \rightarrow \pi D^*, \pi D \leftrightarrow \rho D^*$ $\rho D \rightarrow \rho D, \rho D^* \rightarrow \rho D^*, \rho D \leftrightarrow \pi D^*$

Hadronic re-scattering

Z.-W. Lin, T. Di, and C. Ko, Nucl. Phys. A689, 965 (2001)

PART 1 Bayesian Analysis

PART 1 Bayesian Analysis

 $D_s 2\pi T = 8\pi/(\hat{q}/T^3)$

$$D_{s}2\pi T$$

$$= \frac{1}{1 + (\gamma^{2}p)^{2}} (D_{s}2\pi T)^{soft}$$

$$+ \frac{(\gamma^{2}p)^{2}}{1 + (\gamma^{2}p)^{2}} (D_{s}2\pi T)^{pQCD}$$

$$(D_s 2\pi T)^{soft} = \alpha (1 + \beta (\frac{T}{T_c} - 1))$$

Generate $\frac{dN}{d^3p}$ of heavy quarks up to hadronization.

Posterior distribution of model parameters

Heavy quark hadronization in A+A: fragmentation (Pythia) + recombination/coalescence

Heavy quark hadronization in p+p: fragmentation (Pythia)

Sudden coalescence approximation. Similar to what Shanshan has presented.

$$\frac{dN_M}{d^3p_M} = \int d^3p_1 d^3p_2 \frac{dN_1}{d^3p_1} \frac{dN_2}{d^3p_2} f_M^W(\vec{p}_1, \vec{p}_2) \delta(\vec{p}_M - \vec{p}_1 - \vec{p}_2)$$

$$\frac{dN_B}{d^3p_B} = \int d^3p_1 d^3p_2 d^3p_3 \frac{dN_1}{d^3p_1} \frac{dN_2}{d^3p_2} \frac{dN_3}{d^3g_2} f_B^W(\vec{p}_1, \vec{p}_2, \vec{p}_3) \delta(\vec{p}_M - \vec{p}_1 - \vec{p}_2 - \vec{p}_3)$$

where

$$f_{M}^{W}(q^{2}) = \frac{g_{M}(2\sqrt{\pi}\sigma)^{3}}{V}e^{-q^{2}\sigma^{2}}$$
$$f_{B}^{W}(q_{1}^{2}, q_{2}^{2}) = \frac{g_{B}(2\sqrt{\pi}\sigma_{1})^{3}(2\sqrt{\pi}\sigma_{2})^{3}}{V^{2}}e^{-q_{1}^{2}\sigma_{1}^{2}-q_{2}^{2}\sigma_{2}^{2}}$$

[Phys. Rev. C88 (2013) 044907]

$$f_M^W(q^2) = \frac{g_M(2\sqrt{\pi}\sigma)^3}{V}e^{-q^2\sigma^2}$$

$$q = |\vec{p}_1 - \vec{p}_2|\sigma = \frac{1}{\sqrt{\mu\omega}}, \mu = \frac{m_1m_2}{m_1 + m_2}$$

 ω determined by comparing to the charge radii:

$$\begin{split} \left\langle r_M^2 \right\rangle_{\rm ch} &= \frac{3}{2\omega} \frac{1}{(m_1 + m_2)(Q_1 + Q_2)} \left(\frac{m_2}{m_1} Q_1 + \frac{m_1}{m_2} Q_2 \right), \\ \left\langle r_B^2 \right\rangle_{\rm ch} &= \frac{3}{2\omega} \frac{1}{(m_1 + m_2 + m_3)(Q_1 + Q_2 + Q_3)} \\ &\left(\frac{m_2 + m_3}{m_1} Q_1 + \frac{m_3 + m_1}{m_2} Q_2 + \frac{m_1 + m_2}{m_3} Q_3 \right), \end{split}$$

 ω = 0.33 GeV for charm and beauty mesons, 0.43 GeV for charm baryons and 0.41 GeV for beauty baryons.

[Phys. Rev. C88 (2013) 044907]

The Ultra-relativistic Quantum Molecule Dynamics (UrQMD) model:

 $\frac{df_i(x,p)}{dt} = \mathcal{C}_i(x,p)$

collision terms (C), including binary collisions, $2 \rightarrow n$ inelastic process, annihilation, resonance formation and decays.

In the semi-classical criterion, the cross section between a pair of particles is approximated as $\sigma_{tot}(\sqrt{s}) = \pi d_0^2$, which means that if the relative distance between the two particles $d_{trans} < d_0$, the collision would happen.

[Physical Review C 93.1 (2016): 014911]

$$H_{AA} = R^D_{AA} / R^C_{AA}$$

$$H_{v_2} = v_2^D / v_2^C$$

- Use Bayesian analysis to "fix" other ingredients of the simulation. The effects of hadronization and re-scattering are singled out.
- Hadronization brings up R_{AA} and v_2 at low p_T .
- Hadronic re-scattering further enhances the v_2 , enhance R_{AA} at low p_T but reduce R_{AA} at low p_T .

Thank you!