Heavy-Flavor Transport in QCD Matter by ECT* STRONG-2:20

TAMU Modelling of Charm Quark Hadronization

Min He

Nanjing University of Sci. & Tech., Nanjing, China

Baseline: charm hadronization in pp collisions

- Postulate: relative chemical equilibrium is reached among different charm-hadron species
 - → a gauge of charm hadronization in both pp & AA collisions

Charm hadrochemistry in pp

- SHM thermal densities as weights to do fragmentation of charm quarks into all charm-hadron species, and then excited states decayed into ground state charm-hadrons
- Λ_C⁺ favors RQM with dσ^{ccbar}/dy=1.0 mb: low p_T enhancement from feeddowns of RQM augmented baryons
- → All RQM augmented charm-hadrons will be also used in AA

Resonance Recombination Model (RRM)

- ► Hadronization = Resonance formation $c\overline{q} \rightarrow D$ → consistent with T-matrix resonant correlations strengthening towards T_c
- > Realized by Boltzmann equation Ravagli & Rapp, 2007

$$p^{\mu}\partial_{\mu}f_{M}(t,\vec{x},\vec{p}) = -m\Gamma f_{M}(t,\vec{x},\vec{p}) + p^{0}\beta(\vec{x},\vec{p}),$$

$$\beta(\vec{x},\vec{p}) = \int \frac{d^{3}p_{1}d^{3}p_{2}}{(2\pi)^{6}}f_{q}(\vec{x},\vec{p}_{1})f_{\bar{q}}(\vec{x},\vec{p}_{2}),$$

$$\times \sigma(s)v_{\text{rel}}(\vec{p}_{1},\vec{p}_{2})\delta^{3}(\vec{p}-\vec{p}_{1}-\vec{p}_{2}),$$

Breit-Wigner

$$\sigma(s) = g_{\sigma}\frac{4\pi}{k^{2}}\frac{(\Gamma m)^{2}}{(s-m^{2}) + (\Gamma m)^{2}}$$

> Equilibrium limit $f_M(\vec{x}, \vec{p}) = \frac{\gamma_{p,M}}{\Gamma_M} \int \frac{d^3 \vec{p}_1 d^3 \vec{p}_2}{(2\pi)^3} f_q(\vec{x}, \vec{p}_1) f_{\bar{q}}(\vec{x}, \vec{p}_2) \times \sigma_M(s) v_{\rm rel}(\vec{p}_1, \vec{p}_2) \delta^3(\vec{p} - \vec{p}_1 - \vec{p}_2) ,$

Energy conservation + detailed balance equilibrium mapping between quark & meson distributions

Generalization to 3-body RRM

> The 1st step: $q_1(p_1) + q_2(p_2) \rightarrow diquark (p_{12})$

$$f_d(\vec{x}, \vec{p}_{12}) = \frac{E_d(\vec{p}_{12})}{\Gamma_d m_d} \int \frac{d^3 p_1 d^3 p_2}{(2\pi)^3} f_1(\vec{x}, \vec{p}_1) f_2(\vec{x}, \vec{p}_2) \sigma_{12}(s_{12}) v_{\rm rel}^{12}(\vec{p}_1, \vec{p}_2) \delta^3(\vec{p}_{12} - \vec{p}_1 - \vec{p}_2)$$

- > The 2nd step: diquark (p_{12}) + $q_3(p_3) \rightarrow$ baryon (p)
 - light diquark correlations in charm-baryons Ebert et al. '11

Charm quark recombination probability

> No. of mesons/baryons formed from a single c-quark of rest frame p_c^*

$$\begin{split} N_M(p_c^*) &= \int \frac{d^3 \vec{p}_1^*}{(2\pi)^3} g_q e^{-E(\vec{p}_1^*)/T_{\rm pc}} \frac{E_M(\vec{p}^*)}{m_M \Gamma_M} \sigma(s) v_{\rm rel}, \\ N_B(p_c^*) &= \int \frac{d^3 p_1 d^3 p_2}{(2\pi)^6} g_1 e^{-E(\vec{p}_1)/T_c} g_2 e^{-E(\vec{p}_2)/T_c} \frac{E_d(\vec{p}_{12})}{m_d \Gamma_d} \sigma(s_{12}) v_{\rm rel}^{12}(\vec{p}_1, \vec{p}_2) \frac{E_B(\vec{p})}{m_B \Gamma_B} \sigma(s_{d3}) v_{\rm rel}^{d3}(\vec{p}_{12}, \vec{p}_{30}), \end{split}$$

▶ Renormalizing $N_M(p_c^*)$ and $N_B(p_c^*)$ by a common factor ~4 for all charmed mesons/baryons such that $\sum_M P_{\text{coal},M}(p_c^*=0) + \sum_B P_{\text{coal},B}(p_c^*=0) = 1$

charm conservation consistently built in, in an (e-by-e) way without spoiling the relative chemical equilibrium realized by RRM

ECT* HQ Workshop, Apr.28, 2021

Space-momentum correlations: light-q

SMCs: Langevin charm quarks

> Langevin-c: low (high) p_T more populated in central (outer)

SMCs usually neglected in ICMs: uniformly distributed independent of p_T $f_{c,q}(\vec{x}, \vec{p}) = (2\pi)^3 \frac{dN_{c,q}}{d^3 \vec{x} d^3 \vec{p}} = \frac{(2\pi)^3}{VE_{(\vec{p})}} \frac{dN_{c,q}}{p_T dp_T d\phi_q dy}$

RRM equilibrium mapping

Event-by-event Langevin-RRM simulation with very large trans. coeffi. & with SMCs properly incorporated

→ kinetic & chemical equil. mapping

Observables come out as RRM predictions with realistic T-matrix coeffi.

Direct D⁰ & Λ_c^+ **production via RRM**

> Including SMCs makes spectra harder & enhances the Λ_c^+/D^0

- Fast-moving c-quarks [p_T~ 3-4 GeV] moving to outer part of fireball find higher-density of harder [p_T~ 0.6-0.9 GeV] light quarks for recombination
- An effect entering squared for the recombination production of Λ_c⁺
 → larger enhancement for Λ_c⁺ → Λ_c⁺/D⁰ ratio enhanced!

D⁰, **D**_s⁺ & Λ_c^+ suppression & elliptic flow

> Final D^0 , $D_s^+ \& \Lambda_c^+$, including feeddowns from all RQM baryons

- T-matrix coefficient*K-factor(=1.6), to compensate for radiative e-loss; uncertainty: BR=50-100% to Λ_c^+ for Λ_c 's & Σ_c 's above DN (2805 MeV)
- Hadronic phase diffusion also included: seamlessly connected to hadronization (RRM+frag), increasing D-meson v_2 by ~15%

Charm-hadron ratios: $\Lambda_c^+/D^0 \& D_s^+/D^0$

- Λ_c⁺/D⁰: low p_T approaching RRM equil. limit = SHM pp; intermediate p_T enhancement from RRM with SMCs; high p_T fragmentation tending to pp value
- D_s⁺/D⁰ enhancement: recombination of charm in a strangenessequilibrated QGP