

Heavy Quark Hadronization in LBT

Shanshan Cao Shandong University

In collaboration with Wen-Jing Xing, Shu-Qing Li, Feng-Lei Liu, Guang-You Qin and Xin-Nian Wang

Two major hadronization mechanisms

Fragmentation:

High momentum heavy quarks are more likely to fragment into hadrons [Peterson, FONLL, Pythia, etc.]

Coalescence (recombination):

Low momentum heavy quarks are more likely to combine with thermal partons into hadrons

Instantaneous coalescence: coalescence probability ~ wavefunction overlap

- Sudden approximation: $|q,g\rangle \rightarrow |h\rangle$ as *T* drops across $T_{\rm c}$
- Probability: wave function projection $W_M \equiv |\langle M | q_1, q_2 \rangle|^2$
- Encodes information of microscopic hadron structures

Coalescence model

Example: 2-body system for meson formation

$$W(\vec{r}, \vec{k}) \equiv |\langle M | q_1, q_2 \rangle|^2 = g_M \int d^3 r' e^{-i\vec{k} \cdot \vec{r}'} \phi_M(\vec{r} + \vec{r}'/2) \phi_M^*(\vec{r} - \vec{r}'/2)$$

 g_M : ratio of spin-color degeneracy between meson and quark states

 ϕ_M : meson wavefunction (S.H.O. approximation with a frequency parameter ω)

$$\vec{r} = \vec{r}'_1 - \vec{r}'_2$$
 $\vec{k} = \frac{1}{E'_1 + E'_2} (E'_2 \vec{p}'_1 - E'_1 \vec{p}'_2)$ (*r'* and *p'* defined in the meson rest frame)

• Momentum space Wigner function (after averaging over position space) for s and p wave ϕ_M :

$$W_{s} = g_{M} \frac{(2\sqrt{\pi}\sigma)^{3}}{V} e^{-\sigma^{2}k^{2}} \qquad W_{p} = g_{M} \frac{(2\sqrt{\pi}\sigma)^{3}}{V} \frac{2}{3} \sigma^{2}k^{2}e^{-\sigma^{2}k^{2}} \qquad (\sigma = 1/\sqrt{\mu\omega}, \mu: \text{ reduced mass })$$

Coalescence model

Hadron spectrum from coalescence

$$f_M(\overrightarrow{p}'_M) = \int d^3p_1 d^3p_2 f_1(\overrightarrow{p}_1) f_2(\overrightarrow{p}_2) W(\overrightarrow{p}_1, \overrightarrow{p}_2) \delta(\overrightarrow{p}'_M - \overrightarrow{p}_1 - \overrightarrow{p}_2)$$

$f_i(\overrightarrow{p}_i)$: distribution of constituent quarks

Light quarks: thermal distribution in the local rest frame of the QGP (gluons are converted to light quark pairs by $gg \rightarrow q\bar{q}$)

Heavy quarks: from a transport model simulation

- Straightforward to extend to a 3-body system for baryon formation
- Coalescence probability for a single charm quark with a given p_c into a particular hadron species

$$P_{\text{coal}}(p_c) = \int d^3 p'_M f_M(\overrightarrow{p}'_M) \text{ with } f_c(\overrightarrow{p}) = \delta(\overrightarrow{p} - \overrightarrow{p}_c)$$

Coalescence probability

- Include both *s* and *p*-wave states in a full 3-D calculation e.g. $D^0 (c\bar{u})$ meson formation with S = 0, 1s wave (L = 0): $S = 0 \rightarrow J = 0$ (D^0) ; $S = 1 \rightarrow J = 1$ (D^{*0}) *p* wave (L = 1): $S = 0 \rightarrow J = 1$ (D_1^0) ; $S = 1 \rightarrow J = 0$ $(D_0^{*0}), J = 1$ $(D_1^{*0}), J = 2$ (D_2^{*0})
- Cover nearly all charmed hadrons in PDG
- Enhance the total P_{coal}
- Allow normalizing $P_{\text{coal}}(p_c = 0) = 1$ with a proper $\omega = 0.24$ GeV, abandoning arbitrary normalization factors in literature
- Predict larger in-medium hadron size ($r_{D^0} = \sqrt{3/(2\mu\omega)} = 0.97$ fm) than in vacuum (0.83 fm), consistent with relativistic potential model prediction (Shi, Zhao, Zhuang, CPC 44 (2020) 8, 084101)
- Coalescence-fragmentation model: use Pythia to fragment heavy quarks that do not coalesce

Energy conservation and thermal limit

- Recall: $f_M(\overrightarrow{p}'_M) = \left[d^3p_1 d^3p_2 f_1(\overrightarrow{p}_1) f_2(\overrightarrow{p}_2) W(\overrightarrow{p}_1, \overrightarrow{p}_2) \delta(\overrightarrow{p}'_M \overrightarrow{p}_1 \overrightarrow{p}_2) \right]$
- Energy is not conserved if \overrightarrow{p}'_{M} is directly put on-shell with the hadron mass
- 3- $p \rightarrow 4$ -p conservation: coalesce to an off-shell *c*-hadron $(E'_M, \overrightarrow{p}'_M)$ and then decay it to an onshell *c*-hadron with a pion $(E_M, \overrightarrow{p}_M) + (E_{\pi}, \overrightarrow{p}_{\pi})$

- Guarantee boost invariance
- Respect the thermal equilibrium limit of *c*-hadrons: thermal c + thermal $q \rightarrow$ thermal D^0
- Sudden approximation $|q,g\rangle \rightarrow |h\rangle$ (no inverse process) does not require the chemical equilibrium

Charmed hadron spectra: QGP flow effect

- Coalescence dominates Λ_c production over a wider $p_{
 m T}$ region than D^0
- The QGP radial flow significantly enhances the coalescence contribution
- The inaccuracy of default Pythia fragmentation in pp should have minor effects on AA results, could be improved later (color reconnection [Velasquez et. al., PRL 111 (2013)], or coalescence in pp [Song, Li, Shao, EPJC 78 (2018)])

Charmed hadron chemistry at RHIC

• (a) Stronger QGP flow boost on heavier hadrons => increasing Λ_c/D^0 with N_{part}

• (b) Coalescence significantly increases Λ_c/D^0 , larger value in more central collisions (stronger QGP flow)

• (c) Enhanced D_s/D^0 due to strangeness enhancement in QGP and larger D_s mass than D^0

RHIC vs. LHC

- IF charm quarks have the same initial spectrum at RHIC and LHC, Λ_c/D^0 would be larger at LHC than RHIC due to the flow effect
- The harder initial charm quark spectra at LHC reduces Λ_c/D^0
- Similar theoretical prediction on D_s/D^0

Prediction on bottom hadron chemistry

- More constraints on the mass (velocity/momentum) dependence of hadronization models
- Assume same diffusion coefficient D_s between c and b quarks
- Only difference: $\omega_c = 0.24 \text{ GeV} \rightarrow \omega_b = 0.14 \text{ GeV}$ so that $P_{\text{coal}}(p_b = 0) = 1$ for *b* quarks