Heavy flavor transport with DAB-MOD

Roland Katz (SUBATECH, France) Project developed at the University of São Paulo (Brazil) with C. Prado, J. Noronha-Hostler, J. Noronha, M. Munhoz, A. Suaide

ECT* Heavy flavor transport 2021 – Online – 27/04/2021

DAB-MOD: basics

"D and B mesons - modular code"

Heavy quarks evolve on the top of 2d+1 bulk profiles

<u>Analyses</u>: -- R_{AA} vs. v₂ -- anisotropies with cumulants -- system size scan --

Inspired by Betz & Gyulassy, JHEP 08, 090 (2014) and Horowitz & Gyulassy, Nucl. Phys. A872, 265 (2011)

$$\frac{\mathrm{d}E}{\mathrm{d}x}(T, v_{\mathrm{Q}}) = -f(T, v_{\mathrm{Q}})\,\zeta\Gamma_{\mathrm{flow}},$$

takes into account the *boost* from the medium cell frame to the global lab frame

- Jet formulation (p>>m):
$$\Gamma_{\rm flow} = \gamma \left[1 - v_{\rm flow} \cos(\varphi_{\rm Q} - \varphi_{\rm flow}) \right],$$

with $\gamma = 1/\sqrt{1 - v_{\rm flow}^2},$
local medium
velocity
Any momentum
formulation:
$$\Gamma_{\rm flow}^{\rm exact} = \gamma \sqrt{1 - 2 \frac{v_{\rm flow}}{v_{\rm Q}}} \cos(\varphi_{\rm Q} - \varphi_{\rm flow}) + \frac{v_{\rm flow}^2}{v_{\rm Q}^2} - v_{\rm flow}^2 \sin^2(\varphi_{\rm Q} - \varphi_{\rm flow}),$$

Same derivation as in the original paper but without assuming p>>m

takes into account

the boost from the medium cell frame to the global lab frame

Discrepancies between the two expressions: when $p_Q \le 3m_Q$

$$\frac{\mathrm{d}E}{\mathrm{d}x}(T, v_{\mathrm{Q}}) = -f(T, v_{\mathrm{Q}})\zeta \Gamma_{\mathrm{flow}},$$

Function encoding the energy loss parametrization

5 different parametrizations tested:

- $f = \xi T^2$ inspired by conformal AdS/CFT calculations- $f = \delta \gamma_Q v_Q T^2$ Gubser, Phys. Rev. D74, 126005 (2006)

with $\gamma_{
m Q} = 1/\sqrt{1-v_{
m Q}^2}$

- $\begin{array}{c|c} & f = \alpha \\ & f = \beta \gamma_{\rm Q} v_{\rm Q} \end{array} \end{array} \begin{array}{c} \text{inspired by } \mathsf{R}_{\rm AA} \text{ vs. } \mathsf{v}_2 \text{ analysis} \\ \text{Das et al., Phys. Lett. B747, 260 (2015)} \\ & \text{nearly T-independent coefficients favored} \end{array}$

- $f = \lambda T^2 F_{\rm drag}$ - $F_{\rm drag}$ from holographic model that describes IQCD thermodynamics Rougemont, Ficnar, Finazzo, and Noronha, JHEP 04, 102 (2016)

$$\frac{\mathrm{d}E}{\mathrm{d}x}(T, v_{\mathrm{Q}}) = -f(T, v_{\mathrm{Q}})\zeta \Gamma_{\mathrm{flow}},$$

Function encoding the energy loss parametrization

We have tested 5 different parametrizations:

 α , β , δ , λ and ξ : proportionality coefficients fixed here to get the same R_{AA} at p_T =10 GeV

- Best models: v_Q independent - T dependence does not play a role for R_{AA} (but does for v_2)

=> We only kept
$$\,f=lpha\,$$
 and $\,f=\xi T^2\,$

$$\frac{\mathrm{d}E}{\mathrm{d}x}(T, v_{\mathrm{Q}}) = -f(T, v_{\mathrm{Q}})\zeta \Gamma_{\mathrm{flow}},$$

Function encoding the *energy loss parametrization*

We have tested 5 different parametrizations:

 D^0 meson $\alpha \Gamma_{\rm flow}$ - $\beta v_{\rm Q} \gamma \Gamma_{\rm flow}$ α , β , δ , λ and ξ : -20-40%, Pb-Pb $\sqrt{s_{\rm NN}} = 2.76 \,{\rm TeV}$ 0.1 $-\xi T^2 \Gamma_{\rm flow}$ **Fragmentation only** proportionality coefficients $- \delta v_{\rm Q} \gamma T^2 \Gamma_{\rm flow}$ $- \lambda T^2 F_{\rm drag} \Gamma_{\rm flow} \ 0.08$ fixed here to get the same R_{AA} at $p_T=10$ GeV $\begin{array}{c} 00.0 \\ 0.0 \\ 0.0 \end{array}$ - Best models: v_o independent 0.04- T dependence does not play a role for R_{AA} (but does for v_2) 0.020 => We only kept $f = \alpha$ and $f = \xi T^2$ 10 0

MCKLN $T_{\rm d} = 140 \, {\rm MeV}$

 $p_{\rm T} ({\rm GeV})$

$$\frac{\mathrm{d}E}{\mathrm{d}x}(T, v_{\mathrm{Q}}) = -f(T, v_{\mathrm{Q}})\zeta\Gamma_{\mathrm{flow}},$$

A random variable to tackle *energy loss fluctuations* Takes one value for each heavy quark Inspired by B. Betz and M. Gyulassy, JHEP 08, 090 (2014)

We tested 3 different probability distributions:

$$\frac{\mathrm{d}E}{\mathrm{d}x}(T, v_{\mathrm{Q}}) = -f(T, v_{\mathrm{Q}})\zeta\Gamma_{\mathrm{flow}},$$

A random variable to tackle *energy loss fluctuations* Takes one value for each heavy quark

Small impact on R_{AA}

Large impact on v_n

Comparison to data: not relevent here

Langevin dynamics

Relativistic Langevin equation

$$dx_i = \frac{p_i}{E} dt,$$

$$dp_i = -\Gamma(\mathbf{p})p_i dt + \sqrt{dt}\sqrt{\kappa}\rho_i,$$

With all the necessary boosts between the medium cell and lab frame

Relativistic Einstein fluctuation-dissipation relation: $\kappa = 2E\Gamma T = 2T^2/D$,

Two different parametrizations:

- "**M&T**": from Moore and Teaney, QCD+HTL model Moore and Teaney, Phys. Rev. C71, 064904 (2005)

 $D_{\mathrm{M\&T}} = k_{\mathrm{M\&T}} / (2\pi T),$

- "**G&A**" : from Gossiaux and Aichelin, QCD+HTL collisional model with running coupling and optimized propagator. Gossiaux and Aichelin, Nucl. Phys. A830, 203C (2009)

$$\Gamma_{\mathrm{G\&A}} = k_{\mathrm{G\&A}} A_{\mathrm{G\&A}}(T,p)$$

Langevin dynamics

Relativistic Langevin equation

$$dx_i = \frac{p_i}{E} dt,$$

$$dp_i = -\Gamma(\mathbf{p})p_i dt + \sqrt{dt}\sqrt{\kappa}\rho_i,$$

With all the necessary boosts between the medium cell and lab frame

 $\kappa = 2E\Gamma T = 2T^2/D,$ Relativistic Einstein fluctuation-dissipation relation:

Calibration

For each transport model -> one free parameter

(α and ξ for energy losses -- $k_{M\&T}$ and $k_{G\&A}$ for Langevin)

fixed with 0-10% R_{AA} data at high- p_T (energy loss) or intermediate- p_T (Langevin)

(D⁰ data for c quarks, electron from HF data for b quarks)

R_{AA}

Azimuthal anisotropies

Langevin M&T: best at low- $p_T \neq \text{const Energy loss: best at high-}p_T$ Underestimate the v_n at high- p_T

Conclusion

« Multi-scale » behaviour:

Langevin better at low-p_T, energy loss at high-p_T

T & v_Q independent energy loss
 Moore and Teaney » diffusion coeff.
 DAB-MOD

Thank you !

Roland Katz – ECT* HF transport in QCD matter – 27/04/2021

Back up

Jet Γ_{flow} vs. Exact Γ_{flow}

Energy loss fluctuations

Coupling factors

Coupling factors for charm	RHIC AuAu	LHC PbPb	LHC PbPb
quarks at $T_{\rm d} = 120 \setminus 160 \text{ MeV}$	$\sqrt{s_{\rm NN}} = 200 {\rm GeV}$	$\sqrt{s_{\rm NN}} = 2.76 {\rm TeV}$	$\sqrt{s_{\rm NN}} = 5.02 {\rm TeV}$
α without fluctuations	$0.393 \setminus 0.623$	$1.0 \setminus 1.624$	$0.708 \setminus 1.011$
α with uniform fluct.	$0.649 \setminus none$	$1.7 \setminus none$	$0.993 \setminus none$
α with linear fluct.	$0.77 \setminus none$	$2.024 \setminus none$	$1.130 \setminus none$
α with gaussian fluct.	$0.43 \setminus \text{none}$	$1.1 \setminus none$	$0.751 \setminus none$
ξ	$11.57 \setminus 15.16$	$30.28 \setminus 40.05$	$14.76 \setminus 17.16$
k _{M&T}	$0.48 \setminus 0.34$	$0.227 \setminus 0.169$	$0.5 \setminus 0.41$
k _{G&A}	$0.639 \setminus 0.921$	$1.039 \setminus 1.577$	$0.622 \setminus 0.828$

TABLE I. Values of the coupling factors for charm quarks determined for each transport model, collision energy, and decoupling temperature. These values are obtained using MCKLN initial conditions.

Coupling factors for bottom quarks at $T_{\rm d} = 120 \ 160 \ {\rm MeV}$	$\begin{array}{c} \text{RHIC AuAu} \\ \sqrt{s_{\text{NN}}} = 200 \text{GeV} \end{array}$	$\frac{\text{LHC PbPb}}{\sqrt{s_{\text{NN}}} = 2.76 \text{TeV}}$	$\frac{\text{LHC PbPb}}{\sqrt{s_{\text{NN}}} = 5.02 \text{TeV}}$
α without fluctuations	$0.264 \setminus 0.4$	$0.72 \setminus 1.12$	$0.667 \setminus 0.823$
α with uniform fluct.	$0.316 \setminus none$	$0.857 \setminus none$	$0.824 \setminus none$
α with linear fluct.	$0.339 \setminus none$	$0.921 \setminus none$	$0.913 \setminus none$
α with gaussian fluct.	$0.265 \setminus none$	$0.76 \setminus none$	$0.624 \setminus none$
ξ	$7.6 \setminus 10$	$21.52 \setminus 27.06$	none \setminus none
$k_{ m M\&T}$	$0.648 \setminus 0.486$	$0.32 \setminus 0.226$	$0.516 \setminus 0.411$
$k_{\mathrm{G\&A}}$	$0.606 \setminus 0.808$	$3.21 \setminus 2.26$	$0.681 \setminus 0.884$

TABLE II. Values of the coupling factors for bottom quarks determined for each transport model, collision energy, and decoupling temperature. These values are obtained using MCKLN initial conditions.

DAB-MOD: bulk profiles

MCKLN

TRENTO

21

Initial fluctuations

 "MCKLN": implementation of a Color Glass Condensate k_T-factorization model

or

- **Trento**: tuned to IP-Glasma. Has larger initial T. At LHC run 2 Trento generally works best

Expansion

- Using v-USPhydro: a 2d+1 event-by-event relativistic viscous hydro Viscosity set to $\eta/s = 0.05$
- With MCKLN: Equation of state S95n-v1 ≠ Trento: EOS2+1 from IQCD

Final stages

- Cooper-Frye freeze-out with viscous corrections

~ 1000 profiles per 10% centrality range

Describes data in the soft sector => hydro parameters are fixed

DAB-MOD: heavy quarks

Initial conditions

- Large oversampling of the HQs (statistics)
- Spatial -> following initial bulk densities; p_T -> **FONLL spectra**
- No shadowing or cold nuclear matter effects

Transport

- Parametric Energy loss models

$$\frac{dE}{dx} = -f(T, p, x) \,\Gamma_{\text{flow}}$$

Where Γ_{flow} : takes into account the boosts

Parametrizations $f(T,p,x)=\alpha$ or $f(T,p,x)=\xi T^2$ -> ${\rm R}_{\rm AA}$ trends ok

or

- Relativistic Langevin models $dp_i = -\Gamma(\vec{p})p_i dt + \sqrt{dt}\sqrt{\kappa}\rho_i$

Two different parametrizations:

- "M&T": from Moore and Teaney, QCD+HTL model $\,D \propto 1/(2\pi T)$
- "G&A" : from Gossiaux and Aichelin, QCD+HTL model

with running coupling and optimized propagator.

DAB-MOD: heavy quarks

Hadronization

- **Decoupling** T_d : 120 < T_d < 160 MeV -> hadronization uncertainties
- **Fragmentation**: Peterson function $f(z) \propto [z(1 1/z \epsilon_Q/(1 z))]^{-1}$ to obtain the fraction z of the HQ $E_Q + p_Q$ taken by the hadron $E_H + p_H$

with or without

Light-heavy quark coalescence

- Inspired by Dover et al.: instantaneous projection of states
- Coalescence proba. function of $\vec{p_Q}$, local flow & angle between
- To better fit the observed heavy hadron ratios, we included: thermal factors "exp[-(m_{excited}-m_{ground})/T_d]" between energy states of equal quark content => not only spin but also mass hierarchy between energy states of a hadron type

Final stages

- No final hadronic re-scattering

Details in: arXiv:1906.10768

23

Conclusion

- « Multi-scale » behaviour: Langevin better at low-p_T, energy loss at high-p_T
- T & v_Q independent energy loss
 Gavored within
 Moore and Teaney » diffusion coeff.
 DAB-MOD

DAB-MOD

Possible ideas for DAB-MOD transport

- Implement a more refined microscopic energy loss model?
- Explore coupled Langevin equations in phase space and color space?

Akamatsu, Phys. Rev. C92, 044911 (2015)

- Implement radiative component in Langevin (through Drag or additional force term) ?

Cao, Qin and Bass, Phys. Rev. C 92, 024907 (2015)

Thank you !

Roland Katz – ECT* HF transport in QCD matter – 27/04/2021