

Heavy Quark Diffusion in LBT

Shanshan Cao Shandong University

In collaboration with Wen-Jing Xing, Shu-Qing Li, Feng-Lei Liu, Guang-You Qin and Xin-Nian Wang

Linear Boltzmann Transport Model

Boltzmann equation for parton "1" distribution:

 $p_1 \cdot \partial f_1(x_1, p_1) = E_1 C[f_1]$

The collision term: $C[f_1] \equiv \int d^3k \left[w(\vec{p_1} + \vec{k}, \vec{k}) f_1(\vec{p_1} + \vec{k}) - w(\vec{p_1}, \vec{k}) f_1(\vec{p_1}) \right]$

Elastic Scattering (2->2 process)

$$\begin{split} w(\vec{p}_{1},\vec{k}) &\equiv \sum_{2,3,4} w_{12\to34}(\vec{p}_{1},\vec{k}) \\ w_{12\to34}(\vec{p}_{1},\vec{k}) &= \gamma_{2} \int \frac{d^{3}p_{2}}{(2\pi)^{3}} f_{2}(\vec{p}_{2}) \left[1 \pm f_{3}(\vec{p}_{1}-\vec{k}) \right] \left[1 \pm f_{4}(\vec{p}_{2}+\vec{k}) \right] \\ &\times v_{\mathrm{rel}} d\sigma_{12\to34}(\vec{p}_{1},\vec{p}_{2}\to\vec{p}_{1}-\vec{k},\vec{p}_{2}+\vec{k}) \\ \end{split}$$

Linear Boltzmann Transport Model

Scattering rate:

$$\Gamma_{12\to34}(\vec{p}_1) = \int d^3k w_{12\to34}(\vec{p}_1,\vec{k}) = \frac{\gamma_2}{2E_1} \int \frac{d^3p_2}{(2\pi)^3 2E_2} \int \frac{d^3p_3}{(2\pi)^3 2E_3} \int \frac{d^3p_4}{(2\pi)^3 2E_4} \\ \times f_2(\vec{p}_2) \left[1 \pm f_3(\vec{p}_1 - \vec{k}) \right] \left[1 \pm f_4(\vec{p}_2 + \vec{k}) \right] S_2(s,t,u) \\ \times (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p_3 - p_4) |\mathcal{M}_{12\to34}|^2$$

Kinematic cut $S_2(s,t,u) = \theta(s \ge 2\mu_D^2)\theta(-s + \mu_D^2 \le t \le -\mu_D^2)$

More general form

$$\langle \langle \mathbf{X}(\overrightarrow{p}_1, T) \rangle \rangle \equiv \sum_{12 \to 34} \int d^3 k w_{12 \to 34} \mathbf{X}(\overrightarrow{p}_1, T) \qquad (Qq \to Qq, \quad Qg \to Qg)$$

$$\Gamma = \langle \langle 1 \rangle \rangle \qquad \hat{e} = \langle \langle E_1 - E_3 \rangle \rangle \qquad \hat{q} = \langle \langle \overrightarrow{p}_3 - (\overrightarrow{p}_3 \cdot \hat{p}_1) \hat{p}_1 \rangle \rangle$$
scattering rate drag transverse diffusion

Connection to the bulk medium

$$\Gamma_{12\to34}(\vec{p}_1) = \int d^3k w_{12\to34}(\vec{p}_1,\vec{k}) = \frac{\gamma_2}{2E_1} \int \frac{d^3p_2}{(2\pi)^3 2E_2} \int \frac{d^3p_3}{(2\pi)^3 2E_3} \int \frac{d^3p_4}{(2\pi)^3 2E_4} \\ \times \left(f_2(\vec{p}_2) \left[1 \pm \left(f_3(\vec{p}_1 - \vec{k})\right) \right] \left[1 \pm f_4(\vec{p}_2 + \vec{k}) \right] S_2(s,t,u) \\ \times (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p_3 - p_4) |\mathcal{M}_{12\to34}|^2$$

Bulk matter: CLVisc hydrodynamic simulations (3+1D viscous hydrodynamic model with GPU parallelization) provides local u^{μ} and T

 u^{μ} : boost heavy quark into the local rest frame of the medium

T: determine the momentum distribution of thermal partons inside the medium massless thermal partons for current studies overestimate density, underestimate effective α_s

Monte Carlo Simulation

$$\Gamma_{12\to34}(\vec{p}_1) = \int d^3k w_{12\to34}(\vec{p}_1,\vec{k}) = \frac{\gamma_2}{2E_1} \int \frac{d^3p_2}{(2\pi)^3 2E_2} \int \frac{d^3p_3}{(2\pi)^3 2E_3} \int \frac{d^3p_4}{(2\pi)^3 2E_4} \\ \times f_2(\vec{p}_2) \left[1 \pm f_3(\vec{p}_1 - \vec{k}) \right] \left[1 \pm f_4(\vec{p}_2 + \vec{k}) \right] S_2(s,t,u) \\ \times (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p_3 - p_4) |\mathcal{M}_{12\to34}|^2$$

- 1. Use total rate $\Gamma = \sum_{i} \Gamma_{i}$ to determine the probability of elastic scattering $P_{el} = \Gamma \Delta t$
- 2. Use branching ratios Γ_i/Γ to determine the scattering channel
- 3. Use the differential rate to sample the *p* space of the two outgoing partons

 $\Delta E_{col.}$ from our MC simulation agrees with the semi-analytical result.

Calculation of transport coefficients

$$\langle \langle X(\overrightarrow{p}_1, T) \rangle \rangle \equiv \sum_{12 \to 34} \int d^3 k w_{12 \to 34} X(\overrightarrow{p}_1, T)$$

scattering rate

drag

 $\Gamma = \langle \langle 1 \rangle \rangle \qquad \hat{e} = \langle \langle E_1 - E_3 \rangle \rangle \qquad \hat{q} = \langle \langle \overrightarrow{p}_3 - (\overrightarrow{p}_3 \cdot \hat{p}_1) \hat{p}_1 \rangle \rangle$

transverse diffusion

For elastic contribution only

The inelastic part in LBT is *time-dependent* (will be discussed on Thursday)

For Homework 1(c), we extract drag and transverse diffusion coefficient via brick simulation (both elastic and inelastic processes)

$$A_{\rm L} = \langle p_z^{\rm initial} - p_z^{\rm final} \rangle / L$$
$$B_{\rm T} = \langle p_{\rm T}^{2 \rm final} \rangle / L$$

Improvement in progress LBT \rightarrow QLBT

Introduce thermal mass of light flavor partons (quasi-particle model)

$$m_{g}^{2} = \frac{1}{6}g^{2} \left[(N_{c} + \frac{1}{2}n_{f})T^{2} + \frac{N_{c}}{2\pi^{2}}\Sigma_{q}\mu_{q}^{2} \right]$$

$$m_{u,d}^{2} = \frac{N_{c}^{2} - 1}{8N_{c}}g^{2} \left[T^{2} + \frac{\mu_{u,d}^{2}}{\pi^{2}} \right]$$

$$m_{u,d}^{2} = \frac{N_{c}^{2} - 1}{8N_{c}}g^{2} \left[T^{2} + \frac{\mu_{u,d}^{2}}{\pi^{2}} \right]$$

$$m_{s}^{2} - m_{0s}^{2} = \frac{N_{c}^{2} - 1}{8N_{c}}g^{2} \left[T^{2} + \frac{\mu_{s}^{2}}{\pi^{2}} \right]$$

$$s = (\epsilon + P)/T$$

Calibration of QLBT to heavy quark data

Two running couplings at different scales

 $\alpha_{\rm s}(E)$ at the hard probe scale (A, B parametrization) $\alpha_{s}(E) = \frac{12\pi}{(11N_c - 2N_f)\log((A\frac{E}{T_c} + B)^2)}$

 $\alpha_{\rm s}(T)$ at the medium scale: $g^2(T)/(4\pi)$ (fitted from lattice)

larger value of $\alpha_{\rm s}$ compared to extraction from massless thermal parton scenarios

Calibration results

Transport coefficients (elastic part)

\hat{q}/T^3

 $D_{\rm s}(2\pi T)$

$$D_{\rm s} = \frac{2T^2}{\kappa} \rightarrow D_{\rm s}(2\pi T) = \frac{4\pi T^3}{\kappa} \rightarrow D_{\rm s}(2\pi T) = \frac{8\pi}{\hat{q}/T^3}$$
$$(\hat{q} = 2\kappa)$$