Heavy Quark Diffusion Coefficient from Lattice QCD

Viljami Leino

Nora Brambilla. Péter Petreczky, Antonio Vairo Technische Universität München, Brookhaven National Laboratory

Based on: PRD102 (2020) 7, 074503

Motivation

- κ from perturbation theory has huge variation depending on the order of expansion
 - \Rightarrow non-perturbative measurements needed

Heavy quark diffusion from lattice

- Traditional approach using current correlators has transport peak
- HQEFT inspired Euclidean correlator free of transport peaks

$$G_{\mathrm{E}}(au) = -\sum_{i=1}^{3}rac{\langle \operatorname{Re}\operatorname{Tr} \left[U(1/\mathcal{T}, au) E_i(au,0) U(au,0) E_i(0,0)
ight]
angle}{3 \langle \operatorname{Re}\operatorname{Tr} U(1/\mathcal{T},0)
angle}$$

- Need renormalization on lattice (Christensen and Laine PLB02 (2016)) : $Z_{\rm E} = 1 + g_0^2 \times 0.137718569 \ldots + \mathcal{O}(g_0^4)$
- To get momentum diffusion coefficient κ , a spectral function $\rho(\omega)$ needs to be reversed:

$$G_{\rm E}(\tau) = \int_0^\infty \frac{{\rm d}\omega}{\pi} \rho(\omega, T) \mathcal{K}(\omega, \tau T), \qquad \mathcal{K}(\omega, \tau T) = \frac{\cosh\left(\frac{\omega}{T} \left(\tau T - \frac{1}{2}\right)\right)}{\sinh\left(\frac{\omega}{2T}\right)}$$
$$\kappa = \lim_{\omega \to 0} \frac{2T\rho(\omega)}{\omega}$$

- Create model $ho(\omega)$ by matching to perturbation theory at high ${\cal T}$
- Invert the spectral function equation by varying the model ρ

Lattice parameters

T/T_c	$N_t \times N_s^3$	β	$N_{\rm conf}$	T/T_c	$N_t \times N_s^3$	β	$N_{ m conf}$	T/T_c	$N_t \times N_s^3$	β	$N_{\rm conf}$
	$12 imes 48^3$	6.407	1350		$12 imes 48^3$	7.193	1579		$12 imes 48^3$	8.211	1807
1.1	$16 imes 48^3$	6.621	2623	3	$16 imes 48^3$	7.432	1553	10	$16 imes 48^3$	8.458	2769
	$20 imes 48^3$	6.795	2035		$20 imes 48^3$	7.620	1401		$20 imes 48^3$	8.651	2073
	$24 imes48^3$	6.940	2535		$24 imes 48^3$	7.774	1663		$24 imes 48^3$	8.808	2423
	$12 imes 48^3$	6.639	1801		$12 imes 48^3$	7.774	1587		$12 imes 48^3$	14.194	1039
1.5	$16 imes 48^3$	6.872	2778	6	$16 imes 48^3$	8.019	1556	104	$16 imes 48^3$	14.443	1157
	$20 imes 48^3$	7.044	2081		$20 imes 48^3$	8.211	1258		$20 imes 48^3$	14.635	1139
	$24 imes48^3$	7.192	2496		$24 imes 48^3$	8.367	1430		$24 imes 48^3$	14.792	1375
2.2	$12 imes 48^3$	6.940	1535	$2 imes 10^4$	$12 imes 48^3$	14.792	1948				

- Quenched multilevel simulations
 Code from: Baneriee *et.al.* PRD85 (2012)
- 4 sublattices with 2000 updates
- Temperatures between $1.1T_c 10^4T_c$
- Scale setting with

(Francis et.al.PRD91 (2015))

• Other lattice results

Meyer NJP13 (2011),

Ding et.al.JPG38 (2011),

Banerjee et.al. PRD85 (2012),

Francis et.al. PRD92 (2015)

Altenkort et.al. PRD103 (2021)

Lattice correlator

• Normalize lattice data with the LO Perturbative result:

$$G_{\rm E}^{\rm norm} = \pi^2 T^4 \left[\frac{\cos^2(\pi \tau T)}{\sin^4(\pi \tau T)} + \frac{1}{3 \sin^2(\pi \tau T)} \right]$$

• Perform tree-level improvement by matching lattice and continuum perturbation theories

Caron-Huot et.al.JHEP04 (2009), Francis et.al.PoSLattice (2011)

When do thermal effects start

$$R_2(N_t) = \frac{G_{\rm E}(N_t,\beta)}{G_{\rm E}^{\rm norm}(N_t)} \Big/ \frac{G_{\rm E}(2N_t,\beta)}{G_{\rm E}^{\rm norm}(2N_t)} \,.$$

- On small physical separation every T shares a scaling (apart from finite size effects)
- Thermal effect nonexistent for au < 0.10, then grow

Spectral function

$$G_{\rm E}(\tau) = \int_0^\infty \frac{{\rm d}\omega}{\pi} \rho(\omega) \frac{\cosh\left(\frac{\omega}{T}[\tau T - \frac{1}{2}]\right)}{\sinh\frac{\omega}{2T}}$$
$$\kappa = \lim_{\omega \to 0} \frac{2T}{\omega} \rho(\omega), \qquad \gamma = -\frac{1}{3N_c} \int_0^\infty \frac{d\omega}{2\pi} \frac{\rho(\omega)}{\omega}$$

• Assume simple behavior on IR ($\omega \ll T$):

$$\rho_{\rm IR}(\omega) = \frac{\kappa\omega}{2T}$$

• Perturbative behavior in UV with T=0 NLO ($\omega\gg T$)

(Burnier et.al.JHEP08 (2010)):

$$\rho_{\rm UV}^{\rm NLO}(\omega) = \frac{g^2 C_F \omega^3}{6\pi} \left\{ 1 + \frac{g^2}{(4\pi)^2} \left[N_c \left(\frac{11}{3} \ln \frac{\mu^2}{4\omega^2} + \frac{149}{9} - \frac{8\pi^2}{3} \right) \right] \right\}$$

- set scale: UV: $\rho_{T=0}^{\rm LO}=\rho_{T=0}^{\rm NLO},$ IR: from NLO EQCD
- Use 5-loop running for the coupling

Spectral function behavior

- NLO spectral function works only at very high temperatures
- Try different models for $\omega \sim T$ behavior
- Instead of inverting integral equation, compare to ansatz

Continuum limit and finite size effects

- Use 3 largest lattices for continuum limit
- Check systematics by including the $N_t = 12$ point
- χ^2 /d.o.f. < 5 for τT > 0.20 when using 3 largest lattices (< 10 with $N_t = 12$)
- Finite size effects are negligible

Normalization of Continuum limit

- Data needs additional normalization, do this at $\tau T = 0.19$
- Great agreement to perturbation theory at very high temperatures

κ extraction

- Take continuum limit of the lattice data
- Normalize with different models for spectral function
- Extract κ as all values that normalize to unity in $0.19 \le \tau T \le 0.45$

Lattice results for D_s

- On low temperature close to $\mathcal{T}_{\rm c},$ agreement with other results, including ALICE

Lattice results for κ

- Unprecedented temperature range: $\frac{\kappa^{\rm NLO}}{T^3} = \frac{g^4 C_{\rm F} N_{\rm c}}{18\pi} \left[\ln \frac{2T}{m_{\rm E}} + \xi + C \frac{m_{\rm E}}{T} \right].$
- Can fit temperature dependence C = 3.81(1.33)

Brambilla et.al. PRD102 (2020) 7, 074503 (hep-lat/2007.10078)

- We have measured κ in wide range of temperatures and fitted the temperature dependence
- Observe κ/T^3 decreasing when T increases, similar to perturbation theory
- Future prospects:
 - Measure γ
 - Implement gradient flow to go un-quenched
 - 1/*M* corrections
 - Other operators?

Thank You