1) Provide Heavy-Flavor Transport Coefficients (mu_B=0)
(a) Current best estimate of $\mathrm{Ds}(2 \backslash \mathrm{piT})$ as function of T over available T-range (both charm and bottom, if available).
(b) Normalized momentum dependence of friction coefficient, $A(p ; T) / A(p=0 ; T)$, for current best estimate.
(c) Table of current best estimates of charm friction and momentum-diffusion coefficients for $p=0-40 \mathrm{GeV}$ (in steps of $d p=0.2 \mathrm{GeV}$) and $\mathrm{T}=0.16-0.6 \mathrm{GeV}$ (steps $\mathrm{dT}=0.02 \mathrm{GeV}$) for mu_B=0. The idea is to run them through a Langevin simulation in a common hydrodynamic medium evolution.
2) Assess Hadronization and Hadronic Phase (test case: $30-50 \% 5 \mathrm{TeV}$ PbPb collisions)
(a) Compute $H _A A\left(p T ; T _H\right)=R _A A^{\wedge} H _Q\left(p T ; T _H\right) / R _A A^{\wedge} Q\left(p T ; T _H\right)$, the ratio of the R_AA of the heavy meson (H _Q) just after hadronization to the $R _A A$ of the heavy quark (Q) just before hadronization, for H _Q=D,Lambda_c (as available) and $\mathrm{Q}=\mathrm{c}$.
(b) The same as (a) but for the elliptic flow, v2: $H_{-} v 2\left(p T ; T _H\right)=v 2^{\wedge} H _Q\left(p T ; T _H\right) / v 2^{\wedge} Q\left(p T ; T _H\right)$.
(c) Compute H_AA and H_v2 ratios for D-meson spectra at kinetic freezeout over those right after hadronization (if applicable).
3) Transport Simulations with Imposed Coefficients
(a) Renormalize the charm-quark transport coefficients with a temperature-dependent but momentumindependent K factor, $K(T)$, as to obtain a temperature-independent value of $D_{\text {_ }}$ (2 piT) $==4$ (for Langevin approaches, $\mathrm{D} _\mathrm{s}=\mathrm{T} /\left[\mathrm{m} _\mathrm{Q} A(\mathrm{p}=0)\right]$); then compute R_AA and v2 of charm quarks right before hadronization for $30-50 \% 5 \mathrm{TeV} \mathrm{PbPb}$ collisions within your model.
(b) As an optional assignment (time permitting), to compare transport coefficients from different models: Renormalize current charm-quark transport coefficient, A(p;T), qhat/T^3 for a common R_AA in a fixed brick problem (as in Fig. 7 in Phys. Rev. C99 (2019) 054907); then compute R_AA and v2 of charm quarks right before hadronization for $30-50 \% 5 \mathrm{TeV} \mathrm{PbPb}$ collisions within your model.

Q1(a) Current best estimate of Ds(2lpiT) as function of T over available T -range (both charm and bottom, if available)

Q1 (a) Current best estimate of Ds(2lpiT) as function of T over available T -range (both charm and bottom, if available)

Q1(b) Normalized momentum dependence of friction coefficient, $A(p ; T) / A(p=0 ; T)$, for current best estimate

Q1(b) Normalized momentum dependence of friction coefficient, $A(p ; T) / A(p=0 ; T)$, for current best estimate

Q1(b) Normalized momentum dependence of friction coefficient, $A(p ; T) / A(p=0 ; T)$, for current best estimate

Q1(b) Normalized momentum dependence of friction coefficient, $A(p ; T) / A(p=0 ; T)$, for current best estimate

Q1(b) Normalized momentum dependence of friction coefficient, $A(p ; T) / A(p=0 ; T)$, for current best estimate

Q1(b) Normalized momentum dependence of friction coefficient, $A(p ; T) / A(p=0 ; T)$, for current best estimate

Q1(b) Normalized momentum dependence of friction coefficient, $A(p ; T) / A(p=0 ; T)$, for current best estimate

Q1(b) Normalized momentum dependence of friction coefficient, $A(p ; T) / A(p=0 ; T)$, for current best estimate

Q1(c) Table of current best estimates of charm friction and momentum-diffusion coefficients for $\mathrm{p}=0-40 \mathrm{GeV}$ and $\mathrm{T}=0.16-0.6 \mathrm{GeV}$ for $\mathrm{mu} B=0$.

Q1(c) Table of current best estimates of charm friction and momentum-diffusion coefficients for $\mathrm{p}=0-40 \mathrm{GeV}$ and $\mathrm{T}=0.16-0.6 \mathrm{GeV}$ for mu_B=0.

Q1 (c) Table of current best estimates of charm friction and momentum-diffusion coefficients for $\mathrm{p}=0-40 \mathrm{GeV}$ and $\mathrm{T}=0.16-0.6 \mathrm{GeV}$ for $\mathrm{mu} _\mathrm{B}=0$.

Q1 (c) Table of current best estimates of charm friction and momentum-diffusion coefficients for $\mathrm{p}=0-40 \mathrm{GeV}$ and $\mathrm{T}=0.16-0.6 \mathrm{GeV}$ for mu_B=0.

Q1(c) Table of current best estimates of charm friction and momentum-diffusion coefficients for $\mathrm{p}=0-40 \mathrm{GeV}$ and $\mathrm{T}=0.16-0.6 \mathrm{GeV}$ for $\mathrm{mu} \mathrm{B}=0$.

Q1(c) Table of current best estimates of charm friction and momentum-diffusion coefficients for $\mathrm{p}=0-40 \mathrm{GeV}$ and $\mathrm{T}=0.16-0.6 \mathrm{GeV}$ for $\mathrm{mu} \mathrm{B}=0$.

Q1(c) Table of current best estimates of charm friction and momentum-diffusion coefficients for $\mathrm{p}=0-40 \mathrm{GeV}$ and $\mathrm{T}=0.16-0.6 \mathrm{GeV}$ for mu_B=0.

Q1(c) Table of current best estimates of charm friction and momentum-diffusion coefficients for $\mathrm{p}=0-40 \mathrm{GeV}$ and $\mathrm{T}=0.16-0.6 \mathrm{GeV}$ for $\mathrm{mu} \mathrm{B}=0$.

Q1(c) Table of current best estimates of charm friction and momentum-diffusion coefficients for $\mathrm{p}=0-40 \mathrm{GeV}$ and $\mathrm{T}=0.16-0.6 \mathrm{GeV}$ for mu_B=0.

Q1(c) Table of current best estimates of charm friction and momentum-diffusion coefficients for $\mathrm{p}=0-40 \mathrm{GeV}$ and $\mathrm{T}=0.16-0.6 \mathrm{GeV}$ for $\mathrm{mu} \mathrm{B}=0$.

Q1(c) Table of current best estimates of charm friction and momentum-diffusion

Q1(c) Table of current best estimates of charm friction and momentum-diffusion

Q2(a) Compute $H_{-} A A\left(p T ; T_{-} H\right)=R _A A^{\wedge} H _Q\left(p T ; T _H\right) / R _A A^{\wedge} Q\left(p T ; T _H\right)$, the ratio of the R_AA of the eavy meson (H_Q) just after hadronization to the R_AA of the heavy quark (Q) just before hadronization, for

H $\mathrm{O}=\mathrm{D}$. Lambda c (as available) and $\mathrm{O}=\mathrm{c}$.

Q2(a) Compute H_AA(pT;T_H) = R_AA^H_Q $\left(p T ; T _H\right) / R _A A^{\wedge} Q\left(p T ; T _H\right)$, the ratio of the R_AA of the eavy meson (H_Q) just after hadronization to the R_AA of the heavy quark (Q) just before hadronization, for H $\mathrm{O}=\mathrm{D}$. Lambda c (as available) and $\mathrm{O}=\mathrm{c}$.

Q2(b) The same as (a) but for the elliptic flow, v2: H_v2(pT;T_H) = v2^H_Q ($\mathrm{pT} ; \mathrm{T}_{-} \mathrm{H}$) / v2^Q(pT;T_H).

Q2(b) The same as (a) but for the elliptic flow, v2: H_v2(pT;T_H) = v2^H_Q ($\mathrm{pT} ; \mathrm{T}$ _H) / v2^Q(pT;T_H).

Q2(c) Compute H_AA and H_v2 ratios for D-meson spectra at kinetic freezeout over those right after hadronization (if applicable).

Q2(c) Compute H_AA and H_v2 ratios for D-meson spectra at kinetic freezeout over those right after hadronization (if applicable).

Q3(a) Renormalize the charm-quark transport coefficients with a temperature-dependent but momentum-independent K factor, $K(T)$, as to obtain a temperature-independent value of $D _s(2 p i T)=4$ (for Langevin approaches, $D _s=T /\left[m _Q A(p=0)\right]$); then compute R_AA and v2 of charm quarks right before hadronization for $30-50 \% 5 \mathrm{TeV} \mathrm{PbPb}$ collisions within your model.

Q3(a) Renormalize the charm-quark transport coefficients with a temperature-dependent but momentum-independent K factor, $K(T)$, as to obtain a temperature-independent value of $D _s(2 p i T)=4$ (for Langevin approaches, $D _s=T /\left[m _Q A(p=0)\right]$); then compute R_AA and v 2 of charm quarks right before hadronization for $30-50 \% 5 \mathrm{TeV} \mathrm{PbPb}$ collisions within your model.

