Heavy-Flavor Transport in QCD Matter by ECT*

Report of EMMI-RRTF on Open Heavy Flavor

Min He

Nanjing University of Sci. & Tech., Nanjing, China

EMMI Heavy Flavor Task Force

- > Purpose: scrutinize modelling components between models, to quantify how the uncertainties impact the extraction of $\mathcal{D}s(2\pi T)$
- ➤ Two onsite meetings convened at GSI in Jul. & Dec. 2016
- Key questions/problems addressed:
 - Comparison of conceptual underpinnings between models
 - Comparison of bulk medium evolution models & impact
 - Comparison and impact of HQ hadronizataion/coalescence
 - Comparison of transport coefficients: T- & p- dependence
 - Boltzmann vs Langevin as simulation tools
- Summary published: Nucl. Phys. A979 (2018) 21-86

Outline

- > Initial charm quark spectrum & shadowing
- Bulk evolution models
- > Modelling of hadronization: coalescence vs fragmentation
- Transport coefficient: p- & T-dependence
- Simulation tool: Boltzmann vs Langevin
- ➔I will go through comparisons of these components between different models; and discuss the conceptual underpinnings of each model when appropriate

Initial spectra: pp baseline

- Baseline charm quark p_t spectrum: model usage vs FONLL
- ➤ Baseline D⁰ p_T spectrum: FONLL/BCFY fragmentation

Initial spectra: pp baseline uncertainties

> Uncertainties in FONLL: m_c , factorization/renormalization scales

- set I: $m_c = 1.3$ GeV, $\mu_F/\mu_0 = 1$, $\mu_R/\mu_0 = 1$, scaled by 1.33
- set II: $m_c = 1.5$ GeV, $\mu_F/\mu_0 = 1$, $\mu_R/\mu_0 = 0.5$, scaled by 0.93
- set III: $m_c = 1.5$ GeV, $\mu_F/\mu_0 = 1$, $\mu_R/\mu_0 = 2$, scaled by 2.21

--- HQ transverse mass $\mu_0 = \sqrt{m_Q^2 + p_t^2}$.

Impact on observables after in-medium transport

--- Sensitivities at low p_t (lesser after hadronization): to adopt common pp baseline

Initial spectra: shadowing on top of pp baseline

> Major CNM at LHC energies: nuclear shadowing on charm

 \geq EPS09 shadowing function R_{AA}(p_t) employed for comparison

--- small \rightarrow central \rightarrow large shadowing --- central: ~80% integrated yields left, i.e. ~20% depletion

Initial spectra: shadowing effect

Initial/input charm quark spectrum for transport --- R_{AA}(p_t) × FONLL pp dσ/dp_t

Charm shadowing impact on observables after transport

--- +- 25% variations around central at low PT

--- Uncertainty in shadowing dominates over FONLL intrinsic uncertainties

Bulk evolution models: gross features

 \succ u_µ(T,X,Y, η) & T(T,X,Y, η): linking HQ interaction & spectral evolution

Hydro models

- ideal: UrQMD, TAMU, Nantes VS viscous: LBL-CCNU, Duke, CUJET, POWLANG
- EoS: all lattice-QCD fitted
- T₀=0.3-0.6 fm/c
- hadronization temperature (end of QGP): $T_c=160-170$ MeV (POWLANG 155 MeV)

Full transport models: Catania (quasiparticle) VS PHSD (offshell)

Model inclusive π's, p's	$dN_{\pi^+}/dy (dS/d\eta)$		dN_p/dy		
	0–10%	30–50%	0-10%	30-50%	dicarananaiaa
UrQMD	495	152	34	11	between models
TAMU	682 (12400)	170 (3080)	58	15	
Nantes	478	129	38	10	
Catania	(14000)	(3700)			due to different
LBL-CCNU/Duke	653 (12600)	160 (3080)			entropy input
CUJET	610 (10820)	142 (2610)	45	11	
POWLANG	(9100)	(1450)			
PHSD	722	148	31	6	to be resolved.
exp.	670 ± 68	163±15	31±4	8±1	

Bulk evolution models: flows at Tc

Bulk evolution models: impact on observables

c-quark simulation with common 5*pQCD transport coefficient (Langevin) or cross sections (Boltzmann) m_c=1.5 GeV

--- Except for LBL-CCNU (& PHSD): much smaller R_{AA} and larger v_2 than its counterpart Duke, probably due to the use of massless thermal partons

Bulk evolution models: impact of different Tc

> Catania group with 5^*pQCD comparing T_c=155 vs 170 MeV

--- charm quark R_{AA} little affected, v₂ significantly enhanced

- --- Suppression most effective in early state with high density
- --- transfer of v_2 to charm quark most effective around T_c when the bulk v_2 is already mostly built up + strong coupling of HQ with medium around T_c

Hadronization: coal.+frag.

Hadronization modelling

- ICM + FF: UrQMD, Nantes, Catania, LBL-CCNU, Duke, PHSD
- RRM + FONLL-FF: TAMU
- FF only: CUJET; in-medium FF (similar to coalescence): POWLANG
- $m_q=0.3-0.37$ GeV in most models, except $m_q=0.1$ GeV in Nantes
- Model comparison with common <u>5*pQCD</u>

Hadronization direct effects: H_{AA}

--- High p_T : only FF shift \rightarrow two layers of levelling-off (lower LBL-CNU/Duke & UrQMD)

--- Low p_T: light quark p_T added to c-quark → "flow bump" (also lower LBL-CNU/Duke), more pronounced in central collisions; most marked enhancement in Nantes

Hadronization: model average VS data

Model average with common 5*pQCD (excluding LBL-CCNU & PHSD):

--- Low $p_T v_2$: as a gauge of interaction strength, underestimated by a factor ~ 2

Conclusion: lack of coupling strength with 5*pQCD
 Ds(2πT) must be significantly smaller than ~6 for T<=300 MeV

Coalescence hadronization: ICM vs RRM

 \succ ICM: Instantaneous projection $q \rightarrow h$ in 3-mom. space; RRM: resonant scattering within Boltzmann equation → energy conservation + guaranteed equilibrium limit Comparison: 5*pQCD Langevin + hydro-q within TAMU model 10² 0.20 LHC Pb+Pb 2.76TeV 30-50% LHC Pb+Pb 2.76TeV 30-50% 10¹ Ko-coalescence Ko-coalescence m_=0.0 MeV, dN_/dy=14.2 10° m =0.0 MeV n_=300 MeV, dN_/dy=0.183 dN/2πp_⊤dp_⊤dy(GeV²) 10⁻¹ 0.15 m =300 MeV m =500 MeV, dN_/dy=0.053 - m_=500 MeV 10⁻² 10⁻³ n =0.0 MeV >^{∾ 0.10} 10⁻⁴ 10⁻⁵ 10⁻⁶ RRM 0.05 10⁻⁷ m_=0.0 MeV, dN_/dy=0.79 m_=300 MeV, dN_/dy=0.17 10⁻⁸ n_=500 MeV, dN_/dy=0.00465 10⁻⁹ 0.00 8 10 2 6 2 n 6 p_T (GeV)

--- D-meson p_T spectrum: RRM softer than ICM when approaching thermal limit --- D-meson v_2 : RRM (allowing for isotropic cross section smearing) a bit smaller

than ICM (c-q comoving momentum addition)

Transport coefficient: A(p,T)

Thermalization rate:

$$A = \int \sum |\mathcal{M}|^2 \widehat{f}(\mathbf{q})$$

- Augmented pQCD-based: Nantes (running α_s + reduced screening mass) Catania (running α_s getting large around T_c)
- Nonperturbative: T-matrix(resume in-medium Coulomb + confining potential) \rightarrow resonance correlations enhancing HQ coupling strength around T_c

- --- Low p enhancement: T-matrix resums long range remnant confining force
- T-dependence: parton density VS reduced/screened coupling:
 T-matrix ~ little change for T=200-300; 5*pQCD (fixed α_s) ~ T²; Nantes ~ T

Different A(p,T) in common OSU hydro

Langevin: common c-quark baseline + common hydro evolution

--- R_{AA} at high p_T : TAMU a bit less suppression due to a bit smaller A than 5*pQCD

- --- v_2 at low p_T : TAMU much larger v_2 due to much large A than 5*pQCD
- --- Nantes: much stronger suppression & larger v₂ due to much larger A

More evaluations of transport coeffi.

--- $\mathcal{D}s(2\pi T) \sim 3.7-7.0$ (Banerjee et al.) VS ~1.8 (Ding et al.) at T~1.5 T_c

- Iattice charm correlations (Petreczky et al.)
 - --- partial pressures of charm quarks, mesons, baryons
 - --- hadron-like excitations persist above T_c

Implementing transport coeffi.: BM vs LV

HQ diffusion simulation: Boltzmann vs Langevin with 5*pQCD

 --- M=1.5 GeV: BM R_{AA} 25-30% larger, low p_T v₂ slightly larger than Langevin
 --- BM vs LV deviations vanishing toward M=4.5 GeV; larger toward high p_T: Gaussian distribution in Langevin e-loss less accurate

Bottom in sQGP (no quasiparticles): LV still applicable; BM problematic --- Angular correlations more sensitive to BM vs LV

Summary & Findings

EMMI-RRTF: modelling components for HF probes scrutinized & compared between models

25

20

15

10

5

0

0.6

8.0

- --- baselines, shadowing, bulk evolution, transport coefficient & implementation (BM vs LV), hadronization ³⁰
- Extracting transport coefficient
 - --- Insufficient 5*pQCD $\rightarrow \mathcal{D}_s(2\pi T) \simeq 6$
 - --- recent update: SCS-T-matrix vs U-pot.T-matrix*K=1.6 vs Nantes
 - --- Yet p-dependence important, not reflected here

Unravelling microscopic dynamics of QCD matter

- --- lattice constraints on computing A(p,T): F(r,T), suscepts., spectral funs. vs quasiparticles
- --- hadronization: larger discrepancy & spread between models than c-quark
 - → primary area of further improvements

5*LO-pQCD, α =0.4

SCS-T-matrix (TAMU 2019) c-guark. Nantes Col Eloss (K=1)

T-matrix from U-pot.*K(=1.6): 1905.09216

guenched lattice QCD

Perspectives & observables suggested

- Bottom observables: cleaner probes of sQGP
- D & B v₂ peak structures: gauging interaction strength
- Precision R_{AA} and v_2 : T and M dependence of tran. coeff.
- $D_s \& \Lambda_c$ hadronization: charm hadrochemistry and flow
- HF in jets: HF vs gluon e-loss
- · Pair correlations: delineating elastic vs radiative, BM vs LV
 - Significant progress has been made on many aspects of these issues in the past few years: to be discussed in this online workshop