HEAVY-FLAVOR TRANSPORT IN QCD MATTER

Open heavy flavor: experimental review

Andrea Dainese (INFN Padova, Italy)

INFN

HF Transport WS, @Home, 26.04.2021

Andrea Dainese

HEAVY-FLAVOR TRANSPORT IN QCD MATTER

Open heavy flavor: experimental review

Andrea Dainese

(INFN Padova, Italy)

INFN

Using several slides from review by Cristina Terrevoli (SQM19), compilation plots by Jin Wang (QM2019) and Roberta Arnaldi (HP2020)

HF Transport WS, @Home, 26.04.2021

Andrea Dainese

Outline: part I

HF measurements as probes of all stages of HICs

Outline: part 2 (if time left)

INFN

- HF measurements as probes of all stages of HICs
- Experimental outlook: preparing for the next 10 years

Heavy quark production in pp collisions

- Measurements from 0 to ~50-100 GeV/c for both charm and beauty hadrons
- Systematic comparison with several pQCD calculations with different schemes: data described within uncertainties
- Theory uncertainties >> data uncertainties → for AA models, use pp data uncertainties for p_T shape variations?

Baryon fraction (Λ_c and Ξ_c) at low p_T much larger than predicted by string fragmentation models tuned on ee data, e.g. $\Lambda_c/D^0 \sim 0.5$, $\Xi_c/D^0 \sim 0.2$

*p*_{_} (GeV/*c*)

- Baryon measurements crucial to understand hadronisation (discussed also later)
- Total charm cross section needs baryon measurements (Λ_c at least)

ALI-PREL-345123

Expected increase with respect to extrapolations based on D mesons and ee fragmentation fractions

5

10

p_{_} (GeV/c)

 10^{2}

 10^{3}

vs (GeV)

10

- nPDFs with shadowing describe D-meson p-Pb 5 TeV data (here shown mid-y by ALICE and forward/backward by LHCb)
 - High-p_T tension with recent forward/backward at 8 TeV by LHCb?

- Precise LHCb data potentially constrain nPDFs down to small x
 - But not final-state effects?

HF Transport WS, @Home, 26.04.2021

Andrea Dainese

c and anti-c: opposite Lorentz force

3 orders of magnitude larger slopes w.r.t. charged hadrons

|0|

INFN

Heavy quark interactions: energy loss

HF nuclear modification factors

D meson nuclear modification factor

Different trend RHIC/LHC? Larger flow bump at RHIC? Caused by steeper p_T distribution?

D R_{AA} > π R_{AA} for p_T<6 GeV But difficult for now to conclude on colour charge or mass dependence, due to "confounding" factors (flow, hadroniz.)

- Beauty $R_{AA} > Charm R_{AA}$ at $p_T \sim 10 \text{ GeV} \rightarrow Larger energy loss for c than for b quarks?$
- Qualitatively described by models (smaller elastic coupling + dead cone for gluon radiation)

Meanwhile: dead cone 'seen' in D-jets in pp

 Reduction of gluon radiation from heavy quarks at small angles

 First direct observation using jet iterative declustering and Lund plane analysis of jets that contain a soft D⁰ meson

HF Transport WS, @Home, 26.04.2021

Heavy quark interactions: thermalization?

Open charm and open beauty v_2

- Low p_T: indication of 0 < beauty v₂ < charm v₂
 - significant uncertainties + decay kinematics shifts shapes to lower *p*⊤
 - Larger mass → longer relaxation time → smaller thermalization for beauty?
- High p_T: 0 < beauty v₂ ~ charm v₂
 - Positive *v*² from path-length dependence of energy loss?

Open and hidden HF v_2

- At intermediate p_T , $J/\psi < D < pions$
- consistent with contribution of recombination
- No indication of Y(1S) flow
 - Consistent with large Y mass and small bb recombination

π: JHEP1809(2018)006 D: arXiv:2005.11131 J/ψ: arXiv:2005.14518

b→e: arXiv:2005.11130 Y(1S): PRL123(2019)192301

Strange-HF mesons

Hint of $R_{AA}(B_s) > R_{AA}(B)$ arxiv:1810.03022

D_s/D⁰ in Au-Au by STAR and in Pb-Pb by ALICE

- Compatible results at low-intermediate pt: Ds/D⁰~ 0.4
- No evident centrality dependence
- Hint of increase w.r.t pp measurements

Charm baryons vs mesons

- ALICE and CMS compatible in pp and Pb-Pb (but different *p*^T and centrality ranges)
- No clear diffrence between Pb-Pb and pp

STAR: higher value for $\Lambda_c/D^0 \sim 1$ in Au-Au at low p_T (3-6 GeV/c), but no pp measurement

Charm baryons vs mesons: focus on pp

- · Effect in pp is larger at larger event multiplicity
- Qualitatively described in PYTHIA8 with color reconnection

- Smooth trend from pp to Pb-Pb?
- Is the enhancement saturating already in pp at high multiplicity?
- Does it connect to e+e- (~0.1) at low pp multiplicity?

Need more data and better detectors

FN

Understanding HF hadronisation

- Not only interesting per se, but also pre-requisite to extract HQ transport parameters of the QGP
- Interesting exercise (S. Plumari et al.) shown in HL-LHC Yellow Report

arXiv:1812.06772

Experimental outlook

HF frontier: mainly pushed by detector technology

- Main frontiers to enhance physics reach:
 - rate capabilities & acceptance
 - tracking precision

→ high precision, reduce backgrounds, access to rarer probes (e.g. HFcorrelations, HF-jet hadrochemistry, higher harmonics, (multi-)HF baryons...)

- x10-100 in "statistics" at RHIC and LHC
 - Increased interaction rate at both machines
 - > Faster readout and larger acceptance
- Monolithic pixel trackers bring DCA resolution to 20-30 μ m at p_T =1 GeV/c
 - Pioneered by STAR; key development by ALICE, will be adopted also by sPHENIX, CBM, MPD, NA61, NA60+

NA61/SHINE (2022), NA60+ (>2025?) @ SPS

- Ongoing upgrade: pixel tracker, TPC readout at 1 kHz
- Pb-Pb at $\sqrt{s_{NN}}$ = 5 and 17 GeV in 2022-24
- Main goals: open charm cross section with ~10% precision, critical fluctuations with higher precision

- Proposal for a high-rate dimuon spectrometer with a silicon pixel tracker
 - > Eol submitted to \$PSC, Lol in prep.
- ◆ 10 MHz Pb-Pb at √s_{NN} = 5-17 GeV
- Main goals: caloric curve with thermal dimuons, characterize χ-symmetry restoration, charmonia and open charm (~1% precision)

INFŃ

sPHENIX @ RHIC (2023)

- Got CD2/3: construction can start
- Compact and hermetic design
- Continuous readout at 15 kHz
 - ~100B Au-Au events per year

Focus on:

- Fully reconstructed jets, with HCAL
- Bottomonium states
- > HF mesons and baryons, with MAPS

ALICE in Run 3 (2021) and ideas for Run 4 (2028)

- Upgrade proposal for LS3 (2026): replace inner barrel with a trulycylindrical ultralight one: x3 less material
 - \triangleright e.g. improves by a factor 4 the precision for the Λ_{c}
 - > More HF studies ongoing: Λ_b , B_s , search for "super-nuclei"

LHCb (2021), ATLAS and CMS (2026) Upgrades

- LHCb: ongoing LS2 upgrade:
 - Tracker with higher granularity
 → Pb-Pb 30-100%
 - New storage cell for fixedtarget collisions at up to x100 higher rates (p ... Ne ... Xe)
- ATLAS and CMS: major Phase-2 upgrades for HL-LHC
 - > Extension of tracker acceptance to $|\eta|$ <4
 - Precise timing detectors for pile-up rejection
 t.o.f. PID
 - $_{\odot}$ ATLAS 2.5 < $|\eta|$ < 5
 - \circ CMS $|\eta| < 4$

HF performance outlook: energy loss and transport

INFŃ

HF performance outlook: hadronisation of HQs

Some examples, many more studies available and ongoing

INFŃ

''Si-only'' HI experiment for LHC Run 5 (>2031?)

- Fast, ultra-thin detector with precise tracking and timing
 - Exploit higher NN lumi with intermediate-A nuclei (e.g. Kr)
 - Ultimate performance for (multi-)HF, thermal radiation and soft hadrons (<50 MeV)</p>

Looking forward to HF transport properties extracted from present and future measurements !

Have an interesting and productive workshop !

EXTRA SLIDES

arXiv:1906.03322

0.7

0,+ 0,0,4

0.3

0.1

+, + 00.2 CMS

PbPb

0.5 PbPb

0.6 | y| < 1.0

PbPb 44 μb⁻¹, pp 38 nb⁻¹ (5.02 TeV)

🛉 Data

PYTHIA8 + CR

16

18

20

– EPJC78 (2018) 348 ---- arXiv:1902.08889

pp

ALI-PREL-321702

ALICE: hint of larger Λ_c/D^0 in Pb-Pb w.r.t. to pp for $4 < p_T < 6$ GeV/c CMS: similar Λ_c/D^0 in Pb-Pb and pp at high pT

12

p_T (GeV/c)

14

10

STAR shows higher value for $\Lambda_c/D^0 \sim 1$ in Au-Au at low p_T (3-6 GeV/c), but no pp comparison

- •D-meson tagged jets *R*AA consistent with Dmeson *R*AA
- Hint of larger suppression for low pτ D-jets than high pτ charged jets
- Broader radial distribution of D meson with respect to the jet axis in Pb-Pb?