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on-Perturbative QCD:

» Hadrons, as bound states, are dominated by non-perturbative
QCD dynamics — Two emergent phenomena

» Confinement: Colored particles have never been seen isolated
» Explain how quarks and gluons bind together
» DCSB: Hadrons do not follow the chiral symmetry pattern

» Explain the most important mass generating mechanism for
visible matter in the Universe

» Neither of these phenomena is apparent in QCD 's Lagrangian,
HOWEVER, They play a dominant role in determining the
characteristics of real-world QCD!




erturbative QCD:

» From a quantum field theoretical point of view, these emergent phenomena could be
associated with dramatic, dynamically driven changes in the analytic structure of QCD 's
Schwinger functions (propagators and vertices). The Schwinger functions are solutions of
the quantum equations of motion (Dyson-Schwinger equations).

» The Gap equation of the dressed-quark propagator:

» Baryons: Faddeev equation
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» Baryons: Faddeev equation




—ow to solve?

€ The dressed-quark propagators
€ Diquark amplitudes
€ Diquark propagators
& Faddeev amplitudes




m-!mdred model

€ The dressed-quark propagators
€ Diquark amplitudes
€ Diquark propagators
& Faddeev amplitudes




m- ||n!red quark-diquark model

» Parameters: diquark masses

» These values provide for a good description of numerous dynamical properties of
the nucleon, A-baryon and Roper resonance.

» Solution to the 50 year puzzle -- Roper resonance: Discovered in 1963, the Roper
resonance appears to be an exact copy of the proton except that its mass is 50%
greater and it is unstable.
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Completing the Picture of the Roper Resonance
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Form factors: contain important information about the structure and the properties of
hadrons.

Different probes correspond to different form factors.
The nucleon electromagnetic current: electromagnetic form factors

JEM(Kv Q) — ﬂ’(Pf) [,YMFI(QQ) -+ %O-NVQVFz(Q2>] u(Pz)

® A large number of experimental measurements, with high precision and up to large momentum
transfer.

The nucleon axial-vector current: axial-vector form factors

(K, Q) = a(Py) Dy [waacf b 9P<@2>] u(P)

2 ZmN

® The measurements are much more difficult, since they are related to weak processes.

® Ga-axial form factor: experimental data are rather sparse and with large uncertainties.
® Gr-induced pseudoscalar form factor: ONLY 4 empirical results.

The nucleon pseudoscalar current: pseudoscalar form factor

I

(K, Q) = u(Py) S afGs(QJu(P)

The Partially Conservation of the Axial Current (PCAC) relation:

GAQY) — -2 ap(@*) = T9G5(Q%)

2
dm3; my




meute Form Factors?

» In the quark-diquark framework, the associated symmetry-preserving current:
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Nucleon axial and pseudoscalar form factors
from the covariant Faddeev equation

Gernot Eichmann and Christian S. Fischer
Institut fiir Theoretische Physik, Justus-Liebig-Universitdt Giessen, D-35392 Giessen, Germany
(Dated: November 2, 2018)

We compute the axial and pseudoscalar form factors of the nucleon in the Dyson-Schwinger ap-
proach. To this end, we solve a covariant three-body Faddeev equation for the nucleon wave function
and determine the matrix elements of the axialvector and pseudoscalar isotriplet currents. Our only
input is a well-established and ph logically successful ansatz for the nonperturbative quark-

gluon interaction. As a consequence of the axial Ward-Takahashi identity that is respected at the
quark level, the Goldberger-Treiman relation is reproduced for all current-quark masses. We discuss
the timelike pole structure of the quark-antiquark vertices that enters the nucleon matrix elements
and determines the momentum dependence of the form factors. Our result for the axial charge
underestimates the experimental value by 20 — 25% which might be a signal of missing pion-cloud
contributions. The axial and pseudoscalar form factors agree with phenomenological and lattice

data in the momentum range above Q% ~1...2 GeV?.

PACS numbers: 11.80.Jy 12.38.Lg, 11.40.Ha 14.20.Dh

I. INTRODUCTION

The nucleon’s axial and pseudoscalar form factors
are of fundamental significance for the properties of
the nucleon that are probed in weak interaction pro-
cesses. Their momentum dependence can be experimen-
tally tested by (anti)neutino scattering off nucleons or
nuclei, charged pion electroproduction and muon capture
processes; see [1-3] for reviews. Both form factors are ex-
perimentally hard to extract and therefore considerably
less well known than their electromagnetic counterparts.
Precisely measured is only the low-momentum limit g,
of the axial form factor which is determined from neu-
tron 3-decay. Planned experiments at major facilities are
expected to change this situation in the near future.

The theoretical calculation of the nucleon’s axial
and pseudoscalar form factors requires genuinely non-
perturbative methods. Chiral perturbation theory has
been successful in this respect [1, 4, 5] although it is gen-
erally limited to the region of low momentum transfer.
Recent studies in lattice gauge theory are getting closer
to the physical pion mass region [6-8] but finite-volume
effects become increasingly important. Another non-
perturbative approach is the one via functional meth-

The study of axial and pseudoscalar form factors in
the functional approach has so far been limited to an
approximation where the nucleon is treated as a bound
object of a quark and a diquark that interact via quark
exchange [12, 13]. The entire gluonic substructure ap-
pears here only implicitly within the dressing of quark
and diquark propagators as well as diquark vertex func-
tions. There are several conceptual issues that compli-
cate the treatment of form factors in the quark-diquark
model. First, the requirement of current conservation in-
duces the appearance of intricate *seagull’ diagrams [14].
Such terms have been taken into account for electromag-
netic form factors, but their implementation in the case
of axial form factors has not yet been possible for tech-
nical reasons [13]. Second, to comply with chiral Ward
identities, a current-conserving quark-diquark model re-
quires vector diquarks in addition to the usual scalar and
axialvector diquark degrees of freedom [15]. Such an elab-
orate treatment of the quark-diquark model has not yet
been performed.

TTiC Siuation 15 somewnat dqilerent when the micleon

is treated as a genuine three-body problem. The re-
sulting Faddeev equation in rainbow-ladder truncation
has been solved only recently for the nucleon and A

O 1 S S e YR SR, S

The study of axial and pseudoscalar form factors in
the functional approach has so far been limited to an
approximation where the nucleon is treated as a bound
object of a quark and a diquark that interact via quark
exchange [12, 13]. The entire gluonic substructure ap-
pears here only implicitly within the dressing of quark
and diquark propagators as well as diquark vertex func-
tions. There are several conceptual issues that compli-
cate the treatment of form factors in the quark-diquark
model. First, the requirement of current conservation in-
duces the appearance of intricate ’seagull’ diagrams [14].
Such terms have been taken into account for electromag-
netic form factors, but their implementation in the case
of axial form factors has not yet been possible for tech-
nical reasons [13]. Second, to comply with chiral Ward
identities, a current-conserving quark-diquark model re-
quires vector diquarks in addition to the usual scalar and
axialvector diquark degrees of freedom [15]. Such an elab-
orate treatment of the quark-diquark model has not yet
been performed.

Goldberger-Treiman relation and g pi N N from the three quark BS / Faddeev

approach in the NJL model

Noriyoshi Ishii (Erlangen - Nuremberg U.) (Apr 28, 2000)
Published in: Nucl.Phys.A 689 (2001) 793-845 « e-Print: nucl-th/0004063 [nucl-th] 12
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T he axial current -G, 8.6,

@

2mN

i

B, (K, Q) = 6(Ps) s [%GA(Q2) +1

2

» Two form factors:
* Ga-axial form factor
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> Two form factors:

Ga — axial form factor
Gp — induced pseudoscalar form factor

{%GA(QQ) +

Q

2mN

e axial current — GA & Gr

Gr(@)|ulP)

» The nucleon’s induced pseudoscalar charge: g = zm—“Gp(Q2 = 0.88m/21)
my

> Pion pole dominance (PPD) approximation: Gp(x) ~
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eudoscalar current — Gs

J(K,Q) = a(Py) 2Gs(@)u(P)

> One form factor:

* Gs- pseudoscalar form factor
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Weu!oscalar current — Gs & Grww

J(K,Q)=u(P ) 75G5(Q2)( i)

» One form factor:
* Gs- pseudoscalar form factor

> At the pion mass pole, the residue of Gs is the pion-nucleon coupling
constant grnn. Thus one can define the pion-nucleon form factor Grnn:

Gs5(Q) = ghr L2 Gann(Q?)

GwNN(Q2 = —m,%) — grNN
» The Goldberger-Treiman relation:

Ga(0) = Ja

mn
» The Goldberger-Treiman discrepancy (measures the distance from the
chiral limit):

NN (0)

G A(0
Agr =1- f—”Gﬂ;z(v()—m%)

4 1 _ GT(‘NN(O)
R GrnN(—m2) 18




mu!oscalar current — Gs & Grww

J(K,Q) = u(P) T3 Ga(@)u(P)

» One form factor: hereinf et
* Gs-—pseudoscalar form factor —_— Sl
> At the pion mass pole, the residue of Gs
constant grwn. Thus one can define thep  Ballef —tiln
m2
G5(Q%) = Pt 7{{; Gryn(Q?) Bali, f .
Gann(Q° = —m3) = gann T 12 14 16 18
» The Goldberger-Treiman relation: gan/my [GeV]
B — e e
GA(O) — 77];_7? WNN(O) herein l
N
» The Goldberger-Treiman discrepancy (m  ext —-—
chiral limit): _
Baliy 3¢
- Ga(0) . 5
AGT — ]. — TfL—ZGﬁNN(—m%) Bali, — ¥

-002 O 002 0.04 006 0.08 0.10 0.12
- 1 . GT(‘NN(O) At
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PCAC

» The Partially Conservation of the Axial Current (PCAC) relation:

Q2
Bi

Ca(Q@) — ~5Gp(Q%) = —LG5(Q?)

> Define: the PCAC ratio
P 4m3;G 4
PCAC -
QQGP . 4mquG5
1.01-
1.005
©
S
S 1.0
4
0.995
0'990i0 | Oi4 | 0j8 | 1i2 | 1i6
Q*Imy,

D. Proof of PCAC

We have specified all the necessary building blocks to
construct the diagrams of Jg#(K,Q) and JI(K,Q) de-
picted in Fig. 3, with the corresponding expressions given
in Appendix B. Before we perform numerical computa-
tions, it is important to prove analytically the PCAC
relation, Eq. (7), i.e. J3,(K,Q) and JJ(K, Q) are both

a sum of six terms (listed in Fig. 3):

7 dq,aa dq,sa dq,as
T =Tse + sy + Usgy + sy )

ex Sg 5‘7
56w + TGy + Ity - (68)

Note too that, in this proof, we shall consider either
the neutral (73) or the charged (71%'2) currents; in the
isospin limit, their flavor coefficients are precisely the
same.

@gmm 1: current coupling to quark line>

For Diagram 1 in Fig. 3, contractlng Eq. (B.2) with Q,
and using Eq. (17), we obtaln

QuI (K, Q) + 2im 2 (K, Q)

20
—5 [ ¥ 0P S0 [Qu b+
P



PCAC

» The Partially Conservation of the Axial Current (PCAC) relation:

2
Ga(Q%) — 9

—Gp(Q%) = 2165 (Q%)

> Define: the PCAC ratio
P 4m3;G 4
POAL «—
QQGP . 4mquG5
1.01-
1.005
©
S
S 1.0
4
0.995
0'990i0 | 0i4 | 0j8 | 1i2 | 1i6
X = Q°/mj,

Q#Jﬁ’ﬁﬁ + 22_qu§1+1+
- [ [ 3 g

(~ )T (BT @ndTE @) | 8 (99)

(kr)ST(@)TL (Br)ivs+

The color /flavor coefficients in the first lines of Egs. (92)-
(95) are calculated via Eq. (C.10), i.e. the bystander legs
of the seagulls’ conjugations; and the coefficients in the
second lines are calculated via Eq. (C.9), the exchange
legs.

Sum of all contributions

Using Egs. (68), (73), (78), (79), (80), (81), (86) and
(91), it is straightforward to obtain their sum:

Quli, (K.Q)+2im JU(K,Q) = )

I =0+ 1+

,JPI J;’g . ‘lel J;"z
(QI-‘J.‘?;_L " - (KQ) I 22'mqu? - (K Q))

Py ;Ps ex.JF1 P2
+H(QuIET 27 (K, Q) + 2im I 2 (K, Q)

HQuIET T (K, Q) + 2im JE 2 (K, Q))

+(Qs fﬁ TR (K, Q) + 2im JB 5 (K, Q)

=0, (96)
where j = 3 for the neutral current, or j = 1+ i2%br the

charged currents.




”mmary & Perspective

> Solved the seagull term problem for the axial and pseudoscalar currents,
which had defied our understanding for more than 20 years.

Y

Computed the form factors GA, Gp and Gs.

Y

The PCAC relation can be satisfied precisely.

Next:
O Compute the axial Delta->Delta, N-> Delta, N->Roper...

Y

O In the three-body framework, revisiting the computation of Eichmann & Fischer (2011)
first.




Thank you!



inger equations (DSEs)

Quark propagator: Gluon propagator:

- - -1 -1

=0 '. Ty fi}- TTHOTE = CETEIIBIOL +
I,‘-O“‘

Ghost propagator: + W Ope +

e N o
---—O-_..-. = asccncassee: + - ----O.--- —

Ghost-gluon vertex:

% 4§§s t
- -~ . ~
. . - ~
~ ~ . . X
- -~ NS v

Quark-gluon vertex:

A

+

24



”rons: Bound-states in QFT

» Mesons: a 2-body bound state problem in QFT

> Bethe-Salpeter Equation
» K - fully amputated, two-particle irreducible, quark-antiquark scattering kernel

N =
>

» Baryons: a 3-body bound state problem in QFT.

» Faddeev equation: sums all possible quantum field theoretical exchanges
and interactions that can take place between the three dressed-quarks that

define its valence quark content.

Faddeev equation in rainbow-ladder truncation

25



”ons: Bound-states in QFT

» Mesons: a 2-body bound state problem in QFT
> Bethe-Salpeter Equation

» K - fully amputated, two-particle irreducible, quark-antiquark scattering kernel
S

i i Caill

= s K

—

tS
» Baryons: a 3-body bound state problem in QFT

» Faddeev equation: sums all possible quantum field theoretical exchanges and interactions that
can take place between the three dressed-quarks that define its valence quark content.

?

1
-
=
s

- « W ‘
E — =

O The diquark Ansatz for the 4-point Green's function of the quark-quark correlations.




”ons: Bound-states in QFT

>

Y VYV

Mesons: a 2-body bound state problem in QFT
> Bethe-Salpeter Equation

» K - fully amputated, two-particle irreducible, quark-antiquark scattering kernel
S

1T i Eaail
e —  wnwes K
=

tS
Baryons: a 3-body bound state problem in QFT
Faddeev equation: sums all possible quantum field theoretical exchanges and interactions that

can take place between the three dressed-quarks that define its valence quark content.

27



uilding blocks (I)

» The current-quark vertices

Qu (k'+> )-|-2@qu3(]§+7]€ )=2S5" (k+)?/75

Fzr(k7 Q) — Tj75 ;Eﬂ'(k7 Q

The axial-vector Ward-Takahashi identity:

7J
2
The Bethe-Salpeter Amplitude of the pion:

One Ansatz: . (k,Q) = — (B(k3) + B(k2))

I

=t 5’&’755 ( )

f7r
S~1(k) =i - KA(K?) + B(k?) Therefore, we finally arrive at
in the chiral limit: 7
S — Bk T, (ko k) = 2 [fy,LEA(ki,kQ_) + 2y kk, Aa(k2, k2)

Bl 0) = 7 0
m - : 95 30
+ QZmEB(k+7 k—)] ) (28)
and
Tk k) = e e 11 )

2

TJ m:

Q? + m2 2m,

|

2 Q%+ m2 m,

Z'fyaBEB(k'—QH k%) ; 28 (29)




» The seagull terms
* The diquark Ansatz for the 4-point Green's function of the quark-quark
correlations:

v' Martin Oettel, Mike Pichowsky, Lorenz
von Smekal, Eur.Phys.J. A8 (2000) 251-281

* The equaltime commutators of the axial current operator:

18 (@), D) asms = 500 (@ — )

; _ T

(=4 (), Y (Ws=ys = V()75 58D (@ — y)
i (6. @) = = gy | TsT " (k- @/
Q2T e
and
il 1 (k,Q) =— Q:nq Qgﬂf’m% [T—;i%F 7 (k- Q/2)+
077 + Q/2)(ins 5 2 (59




e M Building blocks )~

» The current-diquark vertices

> AXWTIs:
Quls; ap(Pd, ka) + 2imq T5%,5(pas ka) =
Qu §Z75(pd,kd)—l—2imq g?,@(pd,kd) =

€

(1)
Q

ot (1¥) 1+(0*)

S D

1) The {qq}+—pseudoscalar-current vertex
I5as(Pa; ka) =

(e .

" m Q? + m2 Fps — €apys(Pd + ka)yQs | d(T*?),
q T

(61)

ii) The {qq},+—axial-current vertex

~aa

aa Rax
FSy,aﬂ(pda kd) = (TGua,@u(pd e kd)u"'

Qu aa MIIE aa
+ B+ mi (K m—Néaﬁfyé(Pd + ka)yQs5) ) d(7%),
(62)

iii) The pseudoscalar-current induced 0% «— 171 transi-
tion vertex

I'3%(pa, ka) =
1 m

= i 5 (— 2m;‘;MfQﬁ) d(t%*),  (63)

iv) The axial-current induced 0 < 17 transition ver-
tex

sz,ﬂ(l?d, kz) = (imij‘,’;cSﬂﬁqL

Qu

=3 m( - Qifs:;‘;]\lfQﬁ)) d(1°%) .30 (64)




-e axnaI current — Gs & Gr

L ) = ﬂ(Pf)T;% [wGA(QQ) +1

> Two form factors:

e @Ga- axial form factor

Q

2mN

* Grp-—induced pseudoscalar form factor

> Ga can reliably be represented by dipole

characterised by mass-scale ma

gA my(ry)' my [my

Forn 3503 32500 1.2303)
Faddeovs [31]  0.99(02)  263(06)  1.32(03)
Exp [4] 1.2756(13) - -
Exp[13] - 3.02(11) 1.15(04)
Exp [14] - 303(72)  1.15(08)
Exp[17] = 24131 LA4(18)
I0CD[57] [2103)2)  245(08)(03) 1A1(04)(02)
IQCD [58] 13006)  35730)  0.97(16)
1QCD, [59] 1.23(3) 2.48(15) 1.39(09)
IQCD.[59] |  13009)  3.1930)  1.09(11)
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il

T (K, Q) = ﬂ(ﬂ);% [%GA(QQ) + 1

> Two form factors:

e Ga-axial form factor

* Gp-—induced pseudoscalar form factor

@y

2mN

e axial current — GA & Gr

Gr(@)|ulP)

» The nucleon’s induced pseudoscalar charge: g = zm—“Gp(Q2 = 0.88m/21)
my

» Pion pole dominance (PPD) approximation: Gp(x) ~

50f 1

----- herein
40 v — =— herein PPD
; e expt. Choi et al.
X 30} + lat. Alexandrou et al.
Q i + lat. Jang et al.
O 20' I
101 =S
ol T
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x=Q%/m3,
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s of Ga(0), Gr(0) and G5(0)
TABLE 1. Referring to Fig. 3, separation of G4(0), Gp(0) Pf‘ Qé 'Pi Pf‘ ) ) 'Pi

and G5(0) into contributions from various diagrams, listed as
a fraction of the total @* = 0 value. Diagram (1): (J)5 —
weak-boson strikes dressed-quark with scalar diquark specta- Qg
tor; and (J)§ — weak-boson strikes dressed-quark with axial-

vector diquark spectator. Diagram (2): (J )ch — weak-boson
interacts strikes axial-vector diquark with dressed-quark spec-
tator. Diagram (3): (J )g;‘”AS — weak-boson mediates transi-
tion between scalar and axial-vector diquarks, with dressed-
quark spectator. Diagram (4): (J)ex — weak-boson strikes
dressed-quark “in-flight” between one diquark correlation and
another. Diagrams (5) and (6): (J)sg — weak-boson couples
inside the diquark correlation amplitude. The listed uncer-

tainty in these results reflects the impact of 5% variations

» Projections:

in the diquark masses in Eq. (16), e.g. 0.711_ = 0.71 5 0.01. Gy = _4(1 :_ = tTD[Jsu’Ys’YZ] |
(Mg (Na  (Nad (Naa ™ (Dex  (J)se 1 &
Ga(0) | 0.714, 0.0642, 0.0255, 0.130,  0.07232, O Bpe (GA N 4¢mNTtrD[J5Ws]) :
Gp(0)| 0.744, 0.0705, 0.0255, 0.130.  0.224, —0.19;_ 1
Gs5(0) | 0.744, 0.0695, 0.0255, 0.130,  0.224, —0.191_ Gs = 5_trplJ57s],

» Gr(0) ~ G5(0)
Gp ~ %tTD [J5u7v5] ~ %U“D [J575] ~ G5,

when Q2 ~ 0GeV?2. 33



QCD-kindred model

» The dressed-quark propagator
S(p) = —ir - poy(p?) + o5(p?)
» algebraic form:
Gs(x) =2mF(2(x + m?))
- F(byx)F (byx)[by + by F (ex)], (A3a)

[1 = F(2(x + m?))], (A3b)

EV(X) =x b

with x = p? /A%, m = m/A,

|l —e™

F(x) = (A4)

G¢(x) = Aog(p?) and &y (x) = 226y (p?). The mass scale,
A = 0.566 GeV, and parameter values,

i by b, by by
0.00807 0.131 290 0.603 0.185°

(AS)

associated with Eq. (A3) were fixed in a least-squares fit to
light-meson observables [79,80]. [e = 10~ in Eq. (A3a)
acts only to decouple the large- and intermediate- p®
domains. | 34




QCD-kindred model

» The dressed-quark propagator
S(p) = —ir - poy(p*) + o5(p*)

» Based on solutions to the gap equation that were obtained with a dressed gluon-quark
vertex.

» Mass function has a real-world value at p”2 = 0, NOT the highly inflated value typical of
RE truncation.

» Propagators are entire functions, consistent with sufficient condition for confinement
and completely unlike known results from Rt truncation.

» Parameters in quark propagators were fitted to a diverse array of meson observables.
ZERO parameters changed in study of baryons.

» Compare with that computed using the
DCSB-improved gap equation kernel (DB).
The parametrization is a sound representation
numerical results, although simple and introdu
long beforehand.

p ! GeV

FIG. 6. Sohd curve (blue)—quark mass function generated by
the parametnzation of the dressed-quark propagator specified by
Egs. (A3) and (A4) (A5); and band (green)—exemplary range of
numerical results obtained by solving the gap equation with the
modern DCSB-improved kernels described and 3ised in
Refs. [16,81-83].




QCD-kindred model

» Diquark amplitudes: five types of correlation are possible in a J=1/2 bound state:
isoscalar scalar(1=0,J"P=0"+), isovector pseudovector, isoscalar pseudoscalar,
isoscalar vector, and isovector vector.

» The LEADING structures in the correlation amplitudes for each case are,
respectively (Dirac-flavor-color),

" (kK) = go- FiCTjgf(kjfmﬁ_).
1::1:_ (k; K) = fﬂl-}’FCfﬁ F(k*/ar.),
[ (k; K) = igy- C2HF (12 /w}-),
[, (kK) = Q’l-FyTECTlgf{sznﬁ-).

[y (k:K) = igi-[r,.7 - KlysCTH F (R /w7.),

» Simple form. Just one parameter: diquark masses.

» Match expectations based on solutions of meson and diquark Bethe-Salpeter
amplitudes.



QCD-kindred model

» The diquark propagators

1 3 )
AY(K) =— F (k™ /wg. ),
mg.
+ K, K | S
AL (K) = [ﬁ;w + r;r:j| — F(k* /7).
I I

» The F-functions: Simplest possible form that is consistent with infrared and

ultraviolet constraints of confinement (IR) and 1/g”2 evolution (UV) of meson
propagators.

» Diquarks are confined.

» free-particle-like at spacelike momenta
» pole-free on the timelike axis

» This is NOT true of RL studies. It enables us to reach arbitrarily high values of
momentum transfer.



QCD-kindred model

» The Faddeev ampitudes:
v (P, 0;) = [T (ks K)|22AY (K ) gg. (5 Plu(P)]s;
+ 0 1AL 0] (2 PYu(P)]
+ [T A% i (£ P)u(P)]
+ [Ty 1A i, (45 P)Y(P)), (9)

» Quark-diquark vertices:

Z,ﬁi (¢2,¢ - P)S'(¢;P)G*,
where G'(~) = Ip(ys) and
j+ JEXr) i
q:r’ (£;P) = Zfz (2,6 - P)ysAL(¢; P)G*, S' =1, S =iy.-£-¢ Pl
Al=y-t*h,, A =-iPly, A=y P
3 i A
Zﬂ: (2.2 - P)S'(¢: P)G, A =ilyTn, KB=r-A, A=iny-& -4,

@ (¢:P) Z” (¢2,¢ - P)ys AL(¢; P)GT,



QCD-kindred model

» Both the Faddeev amplitude and wave function are Poincare covariant, i.e. they
are qualitatively identical in all reference frames.

» Each of the scalar functions that appears is frame independent, but the frame
chosen determines just how the elements should be combined.

> In consequence, the manner by which the dressed quarks’ spin, S, and orbital
angular momentum, L, add to form the total momentum J, is frame dependent: L,
S are not independently Poincare invariant.

» The set of baryon rest-frame quark-diquark angular momentum identifications:
2§ ST AZ (A + AD),
S, AL (A + A9),
p:(2A4F = .A%)/3,
(247 - 4)/3,

» The scalar functions associated with these combinations of Dirac matrices in a
Faddeev wave function possess the identified angular momentum correlation
between the quark and diquark.



Quark-diquark picture

» A baryon can be viewed as a Borromean
bound-state, the binding within which
has two contributions:

v Formation of tight diquark correlations.
v" Quark exchange depicted in the shaded
area.

» The exchange ensures that diquark correlations within the baryon are fully
dynamical: no quark holds a special place.

» The rearrangement of the quarks guarantees that the baryon's wave
function complies with Pauli statistics.

» Modern diquarks are different from the old static, point-like diquarks
which featured in early attempts to explain the so-called missing
resonance problem.

» The number of states in the spectrum of baryons obtained is similar to
that found in the three-constituent quark model, just as it is in today's
LQCD calculations.



