
Elastic Form Factors

Bogdan Wojtsekhowski, Jefferson Lab

JLab past and current elastic form factor experiments 

Diquarks in the nucleon

Direct evidence of diquark from the form factor flavor decomposition

Does diquark have a role in the               “minimum” ?
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Hall A form factor experiments
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GMp Form Factor with EIC
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JLab detector landscape
A range of 104 in luminosity.

A big range in solid angle:
from 5 msr (SHMS)
to about 1000 msr (CLAS12).

Polarized He-3 target operates
at Lelectron-nucleon luminosity up to
1.8 .1037 Hz/cm2  (+ the cell)

Beam intensity is limited by 5 µA
in Hall B and D
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JLab detector landscape
A range of 104 in luminosity.

A big range in solid angle:
from 5 msr (SHMS)
to about 1000 msr (CLAS12).
=======================
Polarized He-3 target operates
at Lelectron-nucleon luminosity up to
1.8 .1037 Hz/cm2  (+ the cell)

There is a need for a spectrometer
with a solid angle of 100 msr
capable of operating at 1038 Hz/cm2

GEM tracking is the answer
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JLab detector landscape
A range of 104 in luminosity.

A big range in solid angle:
from 5 msr (SHMS)
to about 1000 msr (CLAS12).

The SBS is in the middle:
for solid angle (up to 70 msr)
and high luminosity capability.

In several A-rated experiments
SBS was found to be the best 
match to the physics.

GEM allows a spectrometer
with open geometry (and large
acceptance) at high luminosity.
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The goal is understanding of the nucleon
1
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Flavor separated contribution:
The log scaling for the proton
Form Factor ratio at a such low
- few GeV2 may be “accidental”.

The lines for individual flavor
are straight! unlikely accidental

Cates, Jager, Riordan, BW
Physical Review Letters, 106, 252003 (2011)

Sx = Q2F x
2 /F x

1
pQCD prediction for large Q2:

S � Q2F2/F1

pQCD updated prediction:
S �

�
Q2/ ln2(Q2/�2)

�
F2/F1
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The flavor disparity in the nucleon

The down quark contribution
to the F1 proton form factor is 
strongly suppressed at high Q2
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CJRW (u/d with new GEn data)
Phys. Rev. Lett. 106 (2011) 

Qattan, Arrington (2-g effects)
Phys.Rev. C86 (2012) 065210
M.Diehl and P.Kroll (GPDs)
Eur.Phys.J. C73 (2013) 2397 

Using the D&K table of Fu, Fd

When the virtual photon of 3 GeV2 interacts with the down quark
the proton more likely falls apart than in the case of the up quark
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The flavor disparity in the nucleon
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The contribution of the down quark to the F1p form factor
at Q2=3.4 GeV2 is three times less than the contribution of
the up quarks (corrected for the number of quarks and their charge).
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The flavor disparity in the nucleon
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The experiment suggests that the probability of proton survival
after absorption of a massive virtual photon is much higher when the
photon interacts with an up quark, which is doubly represented in
the proton.
This may be interpreted as an indication of the up-up correlation. At
high Q2 a correlation usually enhances the high momentum compo-
nent and the interaction cross section.
The relatively weak down quark contribution to the F1p indicates a
suppression of the up-down correlation or a mutual cancellation of
di↵erent types of up-down correlations.
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The goal is understanding of the nucleon
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Wilson, Cloet, Chang, Roberts, PRC 85, 025205 (2012)

Nucleon and Roper electromagnetic elastic and transition form factors
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Frontiers of Nuclear Science:
Theoretical Advances
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Hint of support in Lattice-QCD results

confinement signal

Mass from nothing.

In QCD a quark’s effective mass

depends on its momentum. The

function describing this can be

calculated and is depicted here.

Numerical simulations of lattice

QCD (data, at two different bare

masses) have confirmed model

predictions (solid curves) that the

vast bulk of the constituent mass

of a light quark comes from a

cloud of gluons that are dragged

along by the quark as it

propagates. In this way, a quark

that appears to be absolutely

massless at high energies

(m = 0, red curve) acquires a

large constituent mass at low

energies.

Craig Roberts – Exposing the Dressed Quark’s mass
4th Workshop on Exclusive Reactions at High Momentum Transfer, 18-21 May 2010 . . . 27 – p. 13/28

QCD based prediction:

Interplay between the 
[qq] and {qq} diquarks
creates a zero crossing 

Cloet, Eichmann,
El-Bennich, Klahn and 
C. D. Roberts,
arXiv:0812.0416
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The goal is understanding of the nucleon

What is the nature of the result: a strong reduction 
of the d-quark contribution with increase of Q2?

A singly represented quark has a wider distribution in the 
impact parameter space than the doubly represented quarks.
Why is it wider?

What is the reason for the F2/F1 ratio to be constant?

F2 and F1 are originated by the same object.
There is no indication of the orbital moment.
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The goal is understanding of the nucleon

What is the nature of the result: a strong reduction 
of the d-quark contribution with increase of Q2?

Diquarks are in the nucleon! 
Expected (due to the baryon spectrum) since the 1960s
(the problem of the missing resonances)

What is the reason for the F2/F1 ratio to be constant?

F2 and F1 are originated by the same object.
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The goal is understanding of the nucleon

The Trento workshop in September 2019 led to a comprehensive review of 
the diquark physics and related experiments:

published in Progress in Particle and Nuclear Physics 116 (2021) 103835 
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From the GMp12 experiment
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http://www.scholarpedia.org/article/Nucleon_Form_factors

arXiv:2103.01842v2 [nucl-ex]

Important role of radiative corrections



Diagrams
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Diffractive minimum
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Diffractive minimum
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Diffractive minimum for Deuteron
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Proton Charge Form Factor
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Fast moving quarks can not produce 
a sharp minimum.

Can a diquark lead to a “minimum” in 
the form factor? Yes, according to 
the DSE approach.

Can a diquark play a role in the two-
photon exchange contribution?
Can one make calculation of the two-
photon exchange contribution to e-p 
cross section in the DSE approach?



Summary
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The JLab program on the nucleon 
elastic form factors with the Super 
Bigbite Spectrometer will start 
taking data in 2021.

The F1d/F1u up to 12 GeV2 will be 
one of the first results from 
the GMn run, then will be GEn, and 
finally GEp.

The last week magnets were 
assembled in Hall A.


