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QCD & the Standard Model

Extraordinarily successful to date.

Precision tests of SM can reveal new
physics - more important than ever!

Controlling QCD hadronic
uncertainties o�en a limitation.

QCD is the only experimentally studied strongly-interacting quantum field
theory - highlights many subtleties.
There are still puzzles and surprises in this well-studied arena.
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A tale of two regimes

A running coupling αs = g2
s /(4π)

High Energy
asymptotic freedom, perturbative
degrees of freedom: quarks & gluons

Low Energy

nonperturbative, ΛQCD ∼ 300MeV = O(1fm−1)

color confinement, degrees of freedom: mesons
& baryons

Theory of quarks & gluons −→ low-energy hadron spectrum
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The secret life of hadrons

Hadrons: emergent (long-range)
phenomena resulting from collective
behaviour of quarks and gluons −→
Dynamical mass generation through
non-linear interactions.

Confinement: a purely quantum
phenomenom not yet understood
although consequences established
[Ja�e-Wi�en, claymath.org]

If we start from the QCD lagrangian,
can we calculate the full spectrum of
allowed states?
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QCD admits a rich and exotic spectrum

[from M. Cleuven, 20140]



Calculating the QCD spectrum from first principlies:
La�ice QCD
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Life on a lattice: discrete space-time
Start from the QCD Lagrangian:

L = Ψ̄
�

iγμDμ − m
�

Ψ− 1
4 Ga

μν
Gμν

a

Gluon fields on links of a hypercube; quark fields on sites.

Fermion fields - Wilson, Staggered, Overlap.

Derivatives→ finite di�erences

Parameters: quark mass, coupling

Observables determined from finite-dimensional (Euclidean) path integrals of QCD action

〈O〉 =
1

Z

∫

DUDψ̄Dψ O[U, ψ̄, ψ]e−S[U,ψ̄,ψ] =
1

Z

∫

DU O[U, ψ̄, ψ]det(M)e−S[U] →

lim
Ncfg→∞

1

Ncfg

Ncfg
∑

i=1

Oi[Ui]
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A recipe for (meson) spectroscopy
Interested in two-point correlation functions built from interpolating operators.

Construct a basis of local and non-local operators Ψ̄(x)ΓDiDj . . .Ψ(x) from distilled
fields that overlap onto the state of interest. [PRD80 (2009) 054506].

Build a correlation matrix of two-point functions

Cij = 〈0|OiO†j |0〉 =
∑

n

Zn
i Zn†

j

2En
e−Ent

Ground state mass from fits to e−Ent

Excited states: Solve generalised eigenvalue problem: Cij(t)v
(n)
j = λ(n)(t)Cij(t0)v

(n)
j

eigenvalues: λ(n)(t) ∼ e−Ent
�

1 + O(e−∆Et )
�

- principal correlator yields energies

eigenvectors: related to overlaps Z
(n)
i =

p
2EneEnt0/2v

(n)†
j Cji(t0) - used in spin id.
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The compromises and consequences

1. Working in a finite box at finite grid spacing
Recover continuum QCD by extrapolation.
Costly but included for precision calculations. a0

a(fm)

V  inf.

L(fm)

2. Simulating at physical quark masses
Computational and complexity costs of physical light and heavy quarks.

Physical light quark simulations possible. Heavy quark systematics understood.

3. Breaking symmetry la�ice
−−−−−−−−−−→

O(3) Oh

Lorentz symmetry broken at a 6= 0: Identify states according to cubic symmetries.

4. Working in Euclidean time
Gives access to energies via C(t) ∼ e−Ent . Sca�ering matrix elements not directly
accessible from EQFT. Lüscher formalism and generalisations allow indirect access.
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The lattice simulation landscape

from K. Jansen et al
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The light hadron spectrum I: precision ground states

BMW collaboration: a precision realisation of the low-energy spectrum of QCD. All
systematic uncertainties under control.
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The light hadron spectrum II: ground states including QED

BMW: first principles demonstration of the correct neutron-proton mass di�erence.
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Beyond ground states: excited & exotic light meson spectroscopy
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Hadron Spectrum Collab. 2012. Systematic uncertainties remain
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Beyond ground states: excited & exotic charmonium

Hadron Spectrum Collab. Systematic uncertainties remain: assuming bound states: qq̄
and qq̄g operators only; heavy pions, finite la�ice spacing.
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Beyond ground states: excited & exotic bottomonium
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Hadron Spectrum Collab. Systematic uncertainties remain: assuming bound states: qq̄
and qq̄g operators only; heavy pions, finite la�ice spacing.
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Predictions: (exotic) hybrid meson in charmonium

DDDD

DsDsDsDs

0-+0-+ 1--1-- 2-+2-+ 1-+1-+ 0++0++ 1+-1+- 1++1++ 2++2++ 3+-3+- 0+-0+- 2+-2+-0
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Spin exotic and non-exotic hybrids determined.
Hybrids emerge in same pa�ern & energy scale in mesons and baryons, light
and heavy - a common phenomenology of QCD hybrids.

[Hadron Spectrum Collaboration, 2012]



Beyond bound states from first principles QCD
conventional & exotic resonances
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Beyond simple bound states: resonances in a Euclidean theory
The problem: Lose direct access to sca�ering in a Euclidean QFT.
The solution: On la�ice volumes extract the spectrum. Lüscher formalism (1991) allows
to deduce phase shi� information.

det
�

cot δ(E∗n ) + cotϕ(En, ~P, L)
�

= 0

The more distinct spectrum points the be�er the phase shi� picture
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Example: in ππ scattering

σ evolves from bound-state below ππ threshold at
heavier mass to broad resonance at lighter mass

[1607.05900].

det [1 + iρ(E) · t(E) · (1 + iM(E, L))] = 0.
ρ resonance
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La�ice as a tool to study mass-dependence!
[1507.02599]
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Example: exotic π1(1−+) exotic hybrid meson

A. J. Woss, et al, arXiv:2009.10034

Calculation of the sca�ering amplitudes
in exotic JPC = 1−+,mπ ∼ 700 MeV,
SU(3) point, 8 coupled channels.

Narrow π1 resonance found at heavy
pion masses

Crude extrapolation based on couplings
suggests a broad resonance at lighter
pion masses

Towards a phenomenology of hybrid decays, starting from QCD



Open questions: exotic �arkonium(-like) States:
tackling the XYZs
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The XYZs
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_
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Ryan Mitchell & Steve Olsen

The new strong exotic ma�er has been
around for 15 years
... and we still don’t understand it ...

Needs la�ice resonance studies
including multi-hadrons, tetraquarks
and bound states ...

La�ice studies of strong decays also
valuable.

Many new di�iculties: mQ , proliferation
of thresholds ...

Remains an open challenge.
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A first look: hidden charm & doubly charm tetraquarks
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Extensive operator basis: meson, meson-meson and tetraquarks in I=0 (shown), I=1.
No clear signs of bound states or narrow resonances at mπ = 391 MeV in I=0,1.
A mass-dependence study could be very fruitful: heavier heavy quarks and/or lighter
light quarks. “Straightforward” when all quarks in same framework.

[Cheung et al (HadSpec) JHEP 11 (2017) 033]
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Summary

QCD describes the properties of observed ma�er in terms of fundamental variables
and their interactions.

La�ice calculations o�er an ab initio approach to QCD to provide a full description of
the hadron spectrum. Not discussed here

new calculations of charmonium radiative transitions
sca�ering calculations in charm systems
bo�omonium
quantifying systematic uncertainty

Many open questions and unsolved problems - phenomenological and theoretical -
remain.

Significant progress in spectroscopy calculations - insights on strong dynamics and
the emergence of hadronic mass from fundamental degrees of freedom.

Thanks for listening!
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Hybrids in charmonium and bottomonium

500

1000

1500

500

1000

1500

Spin exotic and non-exotic hybrids determined

Similar result in charmonium and in agreement with Brambilla et al PRD101 (2020).
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Hybrids
Expect a large overlap with operators O ∼ Fμν . Used to identify hybrid multiplets.
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Similar pa�ern & structure of hybrids seen in
light, open-charm and charm (and baryons).

Energy scale ∼ 1.5GeV - as previously.
Charmonium

Bo�omonium
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A charming and beautiful renaissance
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from Ryan Mitchell via Steve Olsen
for the Υ system, by X-H Liu, ECT* 2017

Puzzles and challenges galore!
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X(3872) - a first look (no scattering analysis)

Prelovsek & Leskovec 1307.5172 Padmanath, Lang, Prelovsek 1503.03257

Consider DD̄∗ and J/Ψω in 1++, I = 0.

Candidate state just below threshold -
only if cc̄ in basis.

No charged partner state in I = 1.

Unphysical pion masses.

Within 1MeV of D0D̄0∗ and 8MeV of
D+D∗ thresholds: isospin breaking
e�ects important?

Not an extensive operator basis, on
single volume. Other calculations tells
us this is crucial

No sca�ering analysis.
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Also results from Lee et al 1411.1389.
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Charmonium tetraquarks and Z+
c

A manifestly exotic hadron i.e. does not fit the quark model picture.
What can la�ice say?

Spectrum Analysis
Prelovsek et al, 1405.7615. Include
tetraquark operators - find no Z+

c
candidate. Find the operator basis is
crucial!

Similar conclusion from Lee et al
[1411.1389] and Chen et al [1403.1318].

HadSpec, Cheung et al.
[1709.01417]. Most extensive study
yet with tetraquark, meson-meson,
meson operators in many channels.
No evidence of additional (Z+

c ) state
in I=0 or I=1 partner of X(3872).

Coupled-channel analysis - via potentials

HAL-QCD [1602.03465]: Suggest Z+
c a

threshold cusp in πJ/Ψ− ρηc − D̄D∗

coupled channel analysis.

Method not robustly tested, e.g. ρ in
ππ sca�ering not resolved yet.

Coupled-channel analyses in charmonium needed - underway.
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QCD and the strong interaction
for QCD to describe the strong force successfully, it must have at the quantum level the
following three properties, each of which is dramatically di�erent from the behavior of
the classical theory:

It must have a “mass gap” namely there must be some constant ∆ > 0 such that
every excitation of the vacuum has energy at least ∆.
Explains why the nuclear force is strong by short-ranged

It must have “quark confinement” that is, even though the theory is described in
terms of elementary fields, such as the quark fields, that transform non-trivially
under SU(3), the physical particle states - such as the proton, neutron, and pion - are
SU(3)-invariant.
Why we don’t see individual quarks

It must have “chiral symmetry breaking” which means that the vacuum is potentially
invariant (in the limit, that the quark-bare masses vanish) only under a certain
subgroup of the full symmetry group that acts on the quark fields.
accounts for the current algebra theory of so� pions

from Ja�e-Wi�en, claymath.org

La�ice QCD has provided a wealth of evidence that QCD has these properties
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(Early) predictions: the glueball spectrum
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