

Emergence of (near-)threshold structures in hadron spectrum

Feng-Kun Guo

Institute of Theoretical Physics, CAS

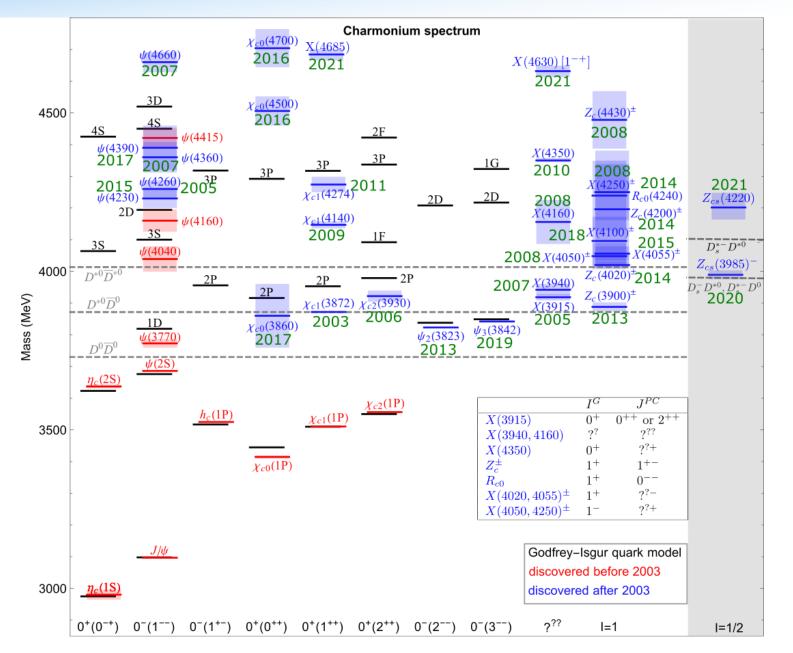
Mass in the Standard Model and Consequences of Its Emergence

ECT* Teleworkshop, 19-23 April 2021

Explaining the many threshold structures in the heavy-quark hadron spectrum X.-K. Dong, FKG, B.-S. Zou, Phys. Rev. Lett. 126 (2021) 152001 [arXiv:2011.14517] A survey of heavy-antiheavy hadronic molecules:

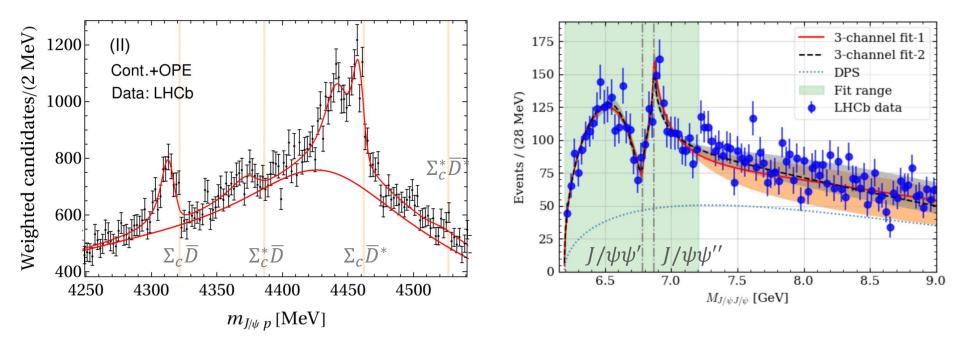
X.-K. Dong, FKG, B.-S. Zou, Progr. Phys. 41 (2021) 65 [arXiv:2101.01021]

Charmonium-like structures



2

P_c and double- J/ψ structures



data from LHCb, PRL122,222001(2019) fit from M.-L. Du et al., PRL124,072001(2020)

data from LHCb, Sci.Bull.65,1983(2020) fit from X.-K. Dong et al., PRL126, 132001(2021)

Many new structures are near thresholds of a pair of hadron hadrons.

Why? What is the pattern?

Threshold structures

X.-K. Dong, FKG, B.-S. Zou, Phys.Rev.Lett.126(2021)152001

Effective range expansion

THE REAL POINT OF THE PARTY OF

• There is always a cusp at an S-wave threshold

• Consider ERE:
$$f_0^{-1}(k) = \frac{1}{a_0} + \frac{1}{2}r_0k^2 - ik + \mathcal{O}\left(\frac{k^4}{\beta^4}\right)$$

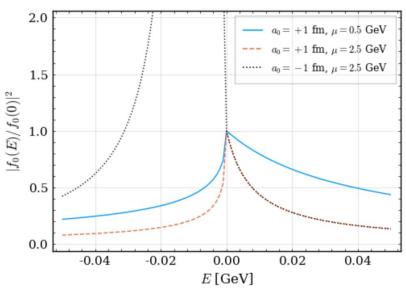
- a_0 : S-wave scattering length; negative for repulsion or attraction w/ a bound state positive for attraction w/o bound state
- Very close to threshold, then scattering length approximation:

$$^{1}(E) = \frac{1}{a_0} - i\sqrt{2\mu E}$$

 $T_{L,ni}$

$$|f_0(E)|^2 = \begin{cases} \frac{1}{1/a_0^2 + 2\mu E} \\ \frac{1}{\left(1/a_0 + \sqrt{-2\mu E}\right)^2} \end{cases}$$

- Cusp at threshold (E=0)
- Maximal at threshold for positive a_0 (attraction)
- Half-maximum width: $\frac{2}{\mu a_0^2}$; virtual state pole at $E_{\text{virtual}} = -1/(2\mu a_0^2)$
- Strong interaction, a₀ becomes negative, pole
 below threshold, peak below threshold
 see also, e.g., Brambilla et al. Phys. Rept. 873, 1 (2020)



 $T^*_{L,fn}$

 f_0^-

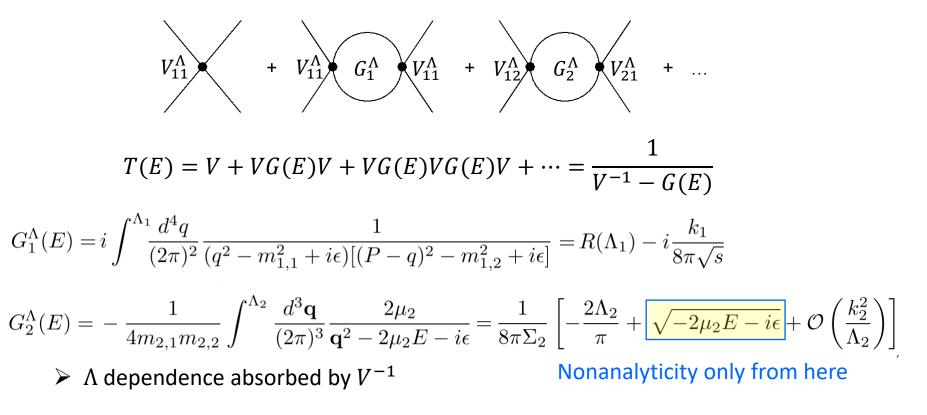
for $E \ge 0$

for E < 0

 ρ_n

Coupled channels

- Full threshold structure needs to be measured in a lower channel is coupled channels
- Consider a two-channel system, construct a nonrelativistic effective field theory (NREFT)
 - \succ Energy region around the higher threshold, Σ_2
 - > Expansion in powers of $E = \sqrt{s} \Sigma_2$
 - Momentum in the lower channel can also be expanded



• Very close to the higher threshold, LO:

$$T(E) = 8\pi\Sigma_2 \begin{pmatrix} -\frac{1}{a_{11}} + ik_1 & \frac{1}{a_{12}} \\ \frac{1}{a_{12}} & -\frac{1}{a_{22}} - \sqrt{-2\mu_2 E - i\epsilon} \end{pmatrix}^{-1}$$
$$= -\frac{8\pi\Sigma_2}{\det} \begin{pmatrix} \frac{1}{a_{22}} + \sqrt{-2\mu_2 E - i\epsilon} & \frac{1}{a_{11}} \\ \frac{1}{a_{12}} & \frac{1}{a_{11}} - ik_1 \end{pmatrix},$$
$$\det = \left(\frac{1}{a_{11}} - ik_1\right) \left(\frac{1}{a_{22}} + \sqrt{-2\mu_2 E - i\epsilon}\right) - \frac{1}{a_{12}^2}$$

Effective scattering length with open-channel effects becomes complex, $\text{Im} \frac{1}{a_{22,\text{eff}}} \leq 0$

$$T_{22}(E) = -\frac{8\pi}{\Sigma_2} \left[\frac{1}{a_{22,\text{eff}}} - i\sqrt{2\mu_2 E} + \mathcal{O}(E) \right]^{-1}$$

$$\frac{1}{a_{22,\text{eff}}} = \frac{1}{a_{22}} - \frac{a_{11}}{a_{12}^2(1+a_{11}^2k_1^2)} - i\frac{a_{11}^2k_1}{a_{12}^2(1+a_{11}^2k_1^2)}$$

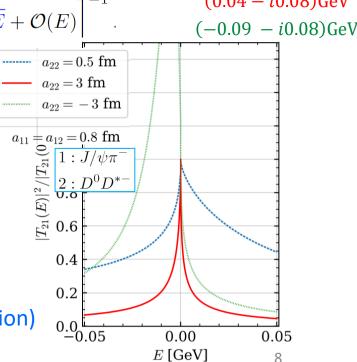
Consider a production process, must go through final-state interaction (unitarity)

 $\begin{array}{c} \bullet \\ \bullet \\ P^{\Lambda} \end{array} G^{\Lambda}_{1} \end{array} + \begin{array}{c} \bullet \\ \bullet \\ P^{\Lambda} \end{array} G^{\Lambda}_{2} \end{array} = P^{\Lambda}_{1} (V^{\Lambda}_{11})^{-1} T_{11}(E) + \left[P^{\Lambda}_{1} (V^{\Lambda}_{11})^{-1} V^{\Lambda}_{12} + P^{\Lambda}_{2} \right] G^{\Lambda}_{2} T_{21}(E)$

Poles in complex All nontrivial energy dependence are contained in $T_{11}(E)$ and $T_{21}(E)$ momentum plane: Case-1: dominated by $T_{21}(E)$, (0.37 - i0.08)GeV (0.04 - i0.08)GeV $T_{21}(E) = \frac{-8\pi\Sigma_2}{a_{12}(1/a_{11} - ik_1)} \left[\frac{1}{a_{22,\text{eff}}} - i\sqrt{2\mu_2 E} + \mathcal{O}(E)\right]^{-1}$ T_{21} G_2^{Λ}

$$T_{21}(E)|^{2} \propto |T_{22}(E)|^{2} \propto \left\{ \left[\left(\operatorname{Re} \frac{1}{a_{22,\text{eff}}} \right)^{2} + \left(\operatorname{Im} \frac{1}{a_{22,\text{eff}}} - \sqrt{2\mu E} \right)^{2} \right]^{-1} \text{ for } E \ge 0 \\ \left[\left(\operatorname{Im} \frac{1}{a_{22,\text{eff}}} \right)^{2} + \left(\operatorname{Re} \frac{1}{a_{22,\text{eff}}} + \sqrt{-2\mu E} \right)^{2} \right]^{-1} \text{ for } E < 0 \end{cases}$$

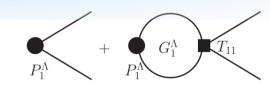
- Cusp at threshold (E=0)
- \blacktriangleright Maximal at threshold for positive $\text{Re}(a_{22,\text{eff}})$ (attraction)
- \blacktriangleright Peaking at pole for negative Re($a_{22,eff}$)



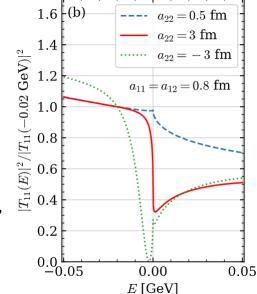
 $P_1^{\Lambda}[1+G_1^{\Lambda}T_{11}(E)]+P_2^{\Lambda}G_2^{\Lambda}(E)T_{21}(E)$

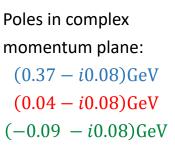
 $\equiv P_1 T_{11}(E) + P_2 T_{21}(E)$

• Case-2: dominated by $T_{11}(E)$



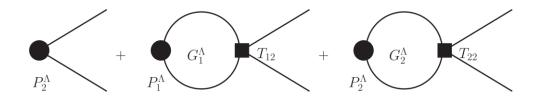
- $T_{11}(E) = \frac{-8\pi\Sigma_2 \left(\frac{1}{a_{22}} i\sqrt{2\mu_2 E}\right)}{\left(\frac{1}{a_{11}} ik_1\right) \left[\frac{1}{a_{22,\text{eff}}} i\sqrt{2\mu_2 E} + \mathcal{O}(E)\right]}$
- Cusp at threshold (E=0)
- One pole and one zero
- For strongly interacting channel-2 (large a₂₂), there must be a dip around threshold
- Abrupt drop if there is a nearby pole





More complicated line shape if both channels are important for the production

• Case-3: final states in channel-2

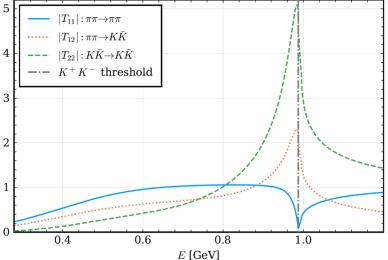


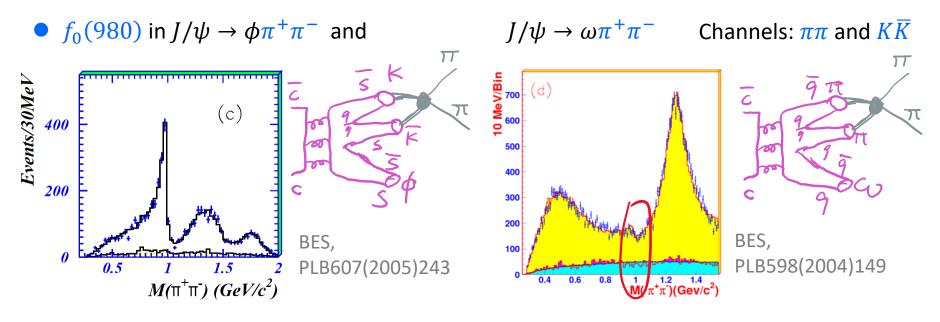
$$P_1 T_{12}(E) + P_2 T_{22}(E) \propto \left[\frac{1}{a_{22,\text{eff}}} - i\sqrt{2\mu_2 E} + \mathcal{O}(E)\right]^{-1}$$

- Suppression due to phase space
- Peak just above threshold would require the pole to be nearby

Phenomenology

with the T-matrix from L.-Y. Dai, M. R. Pennington, PRD90(2014)036004





Driving channel: $K\overline{K}$

Driving channel: $\pi\pi$

Phenomenology

- Production of states with hidden-charm and hidden-bottom: open-flavor much easier than $Q\bar{Q}$ + light hadrons, generally peaks around threshold of a pair of open-flavor hadrons for attractive interaction
- Complications due to more channels
- Threshold structures should be more pronounced in bottom than in charm
 - Either threshold cusp or below-threshold peak
 - Perturbative estimate of scattering length: a $\propto m_Q$ [potential independent of m_Q];
 nonperturbative for strong attraction, near-threshold pole
 - > peak width $\propto 1/m_Q$ for fixed a

Model estimate of near-th. interactions

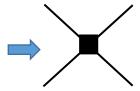
Constant contact terms saturated by light-vector-meson exchange, similar to VMD in the

resonance saturation of the low-energy constants in CHPT

	$L_i^r(M_\rho)$	V	А	S	S_1	η_1	Tota
L_1^r	0.7 ± 0.3	0.6	0	-0.2	0.2 ^{b)}	0	0.6
L_1^r L_2^r	1.3 ± 0.7	1.2	0	0	0	0	1.2
L_3	-4.4 ± 2.5	- 3.6	0	0.6	0	0	- 3.0
L_{4}^{r}	-0.3 ± 0.5	0	0	-0.5	0.5 ^{b)}	0	0.0
L_{5}^{r}	1.4 ± 0.5	0	0	1.4 ^{a)}	0	0	1.4
$L_3 L_4^r L_5^r L_6^r$	-0.2 ± 0.3	0	0	-0.3	0.3 ^{b)}	0	0.0
L_7	-0.4 ± 0.15	0	0	0	0	-0.3	-0.
L_8^r	0.9 ± 0.3	0	0	0.9^{a}	0	0	0.
L_8^r L_9^r	6.9 ± 0.7	6.9 ^{a)}	0	0	0	0	6.
L_{10}^{r}	-5.2 ± 0.3	-10.0	4.0	0	0	0	- 6.

Ecker, Gasser, Pich, de Rafael, NPB321(1989)311

ho, ω , ϕ , ψ^{\dagger}



• List of attractive pairs

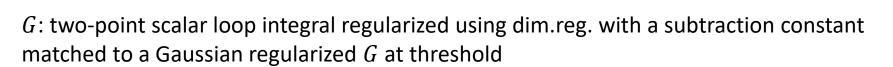
$H\bar{H}$	$D^{(*)}\bar{D}^{(*)}[0,1^{\dagger}];$	$D_s^{(*)}\bar{D}^{(*)}\left[\frac{1}{2}^{\dagger}\right];$	$D_s^{(*)} \bar{D}_s^{(*)} [0]$
	$X(3872), Z_c(3900, 4020)$	$Z_{cs}(3985)$	X(4140)
	$Z_b(10610, 10650)$		
$\bar{H}T$	$\bar{D}^{(*)}\Xi_c [0];$	$ar{D}_{s}^{(*)}\Lambda_{c}\left[0^{\dagger} ight]$	
	$P_{cs}(4459)$		
$\bar{H}S$	$\bar{D}^{(*)}\Sigma_{c}^{(*)}\left[\frac{1}{2}\right];$	$\bar{D}_{s}^{(*)}\Sigma_{c}^{(*)}[1^{\dagger}];$	$\bar{D}^{(*)} \Xi_c^{\prime(*)} [0];$
	$P_c(4312, 4440, 4457)$		
	$\bar{D}^{(*)}\Omega_{c}^{(*)}\left[rac{1}{2}^{\dagger} ight]$		
$T\bar{T}$	$\Lambda_c \bar{\Lambda}_c [0];$	$\Lambda_c \bar{\Xi}_c \left[\frac{1}{2}\right];$	$\Xi_c \bar{\Xi}_c \left[0,1\right]$
$T\bar{S}$	$\Lambda_c \bar{\Sigma}_c^{(*)} [1];$	$\Lambda_c \bar{\Xi}_c^{\prime(*)} \left[\frac{1}{2}\right];$	$\Lambda_c \bar{\Omega}_c^{(*)} \left[0^{\dagger} \right];$
	$\Xi_c \bar{\Sigma}_c^{(*)} [\frac{3}{2}^{\dagger}, \frac{1}{2}];$	$\Xi_c \bar{\Xi}_c^{\prime(*)} [1,0];$	$\Xi_c \bar{\Omega}_c^{(*)} \left[\frac{1}{2} \right]$
$S\bar{S}$	$\Sigma_c^{(*)} \bar{\Sigma}_c^{(*)} [2^{\dagger}, 1, 0];$	$\Sigma_c^{(*)} \bar{\Xi}_c^{'(*)} [\frac{3}{2}^{\dagger}, \frac{1}{2}];$	$\Sigma_{c}^{(*)}\bar{\Omega}_{c}^{(*)}[0^{\dagger}];$
	$\Xi_{c}^{\prime(*)}\bar{\Xi}_{c}^{\prime(*)}[1,0];$	$\Xi_c^{\prime(*)} \bar{\Omega}_c^{(*)} \left[\frac{1}{2}\right];$	$\Omega_c^{(*)}\bar{\Omega}_c^{(*)}\left[0\right]$

Hadronic molecules

X.-K. Dong, FKG, B.-S. Zou, arXiv:2101.01021

Method

- Approximations:
 - Constant contact terms (V) saturated by light-vector-meson exchange, similar to the VMD in the resonance saturation of the low-energy constants in CHPT G. Ecker, J. Gasser, A. Pich, E. de Rafael, NPB321(1989)311
 - Single channels
 - > Neglecting mixing with normal charmonia
- Resummation:

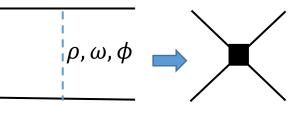


$$G(E) = \frac{1}{16\pi^2} \left\{ a(\mu) + \log \frac{m_1^2}{\mu^2} + \frac{m_2^2 - m_1^2 + s}{2s} \log \frac{m_2^2}{m_1^2} + \frac{k}{E} \log \frac{(2kE+s)^2 - m_1^2 + m_2^2}{(2kE-s)^2 - m_1^2 + m_2^2} \right\}$$
$$G(E) = \int \frac{l^2 dl}{4\pi^2} \frac{\omega_1 + \omega_2}{\omega_1 \omega_2} \frac{e^{-2l^2/\Lambda^2}}{E^2 - (\omega_1 + \omega_2)^2 + i\epsilon} \quad \text{with } \omega_i = \sqrt{m_i^2 + l^2}$$

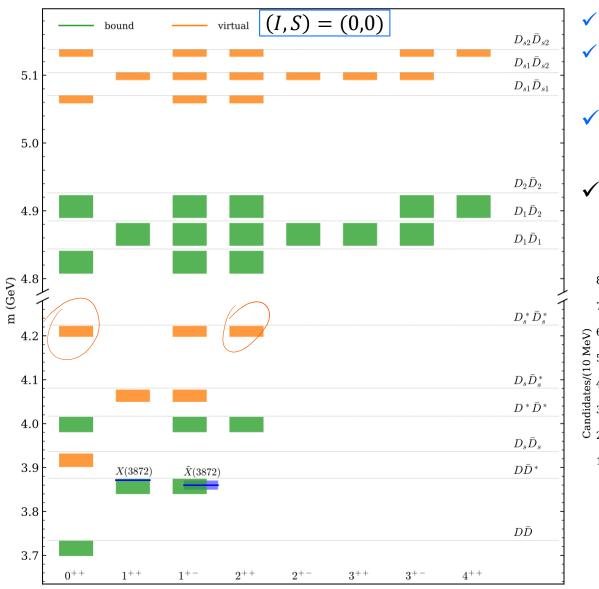
• Hadronic molecules appear as bound or virtual state poles of the *T* matrix

T

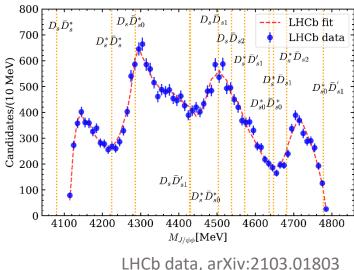
$$=\frac{V}{1-VG}$$



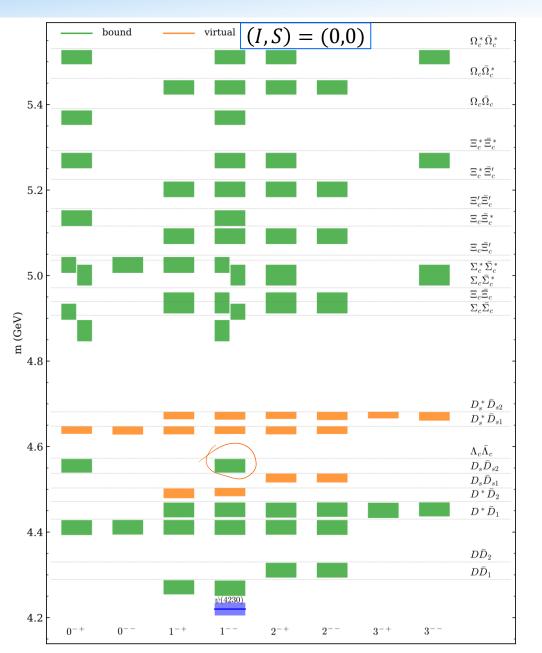
X(3872) and related states



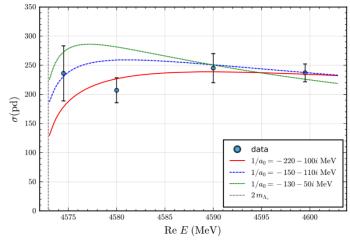
 ✓ X(3872) as a DD* bound state
 ✓ Negative-C parity partner observed by COMPASS PLB783(2018)334
 ✓ DD bound state predicted with lattice Prelovsek et al., 2011.02542
 ✓ Evidence for a D^{*}_SD^{*}_S virtual state in LHCb data?



Isoscalar vectors and related states



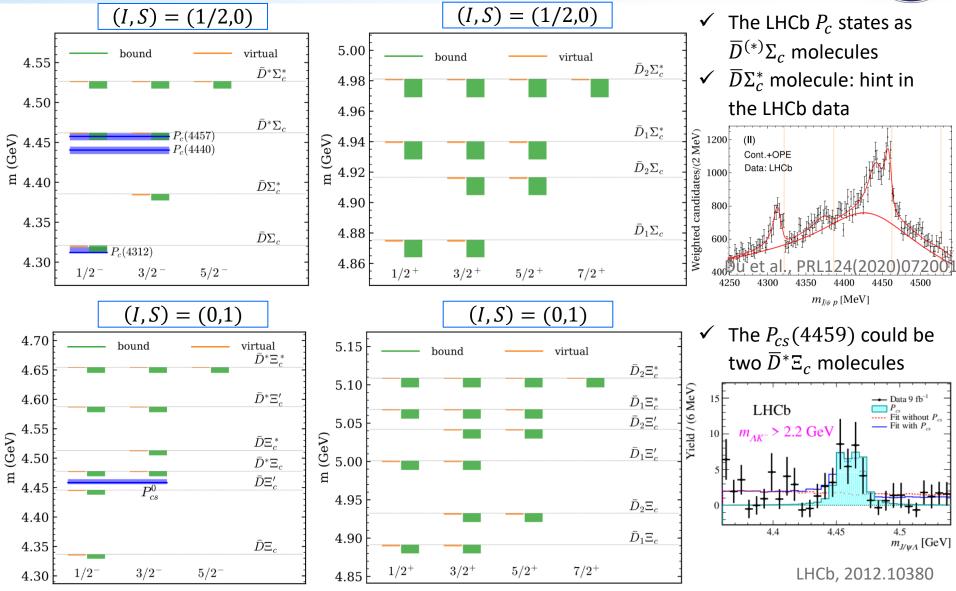
- ✓ $Y(4260)/\psi(4230)$ as a $\overline{D}D_1$ bound state
- ✓ Vector charmonia around 4.4 GeV unclear
- ✓ Evidence for $1^{--} \Lambda_c \overline{\Lambda}_c$ bound state in BESIII data
 - Sommerfeld factor
 - Near-threshold pole
 - Different from Y(4630/4660)



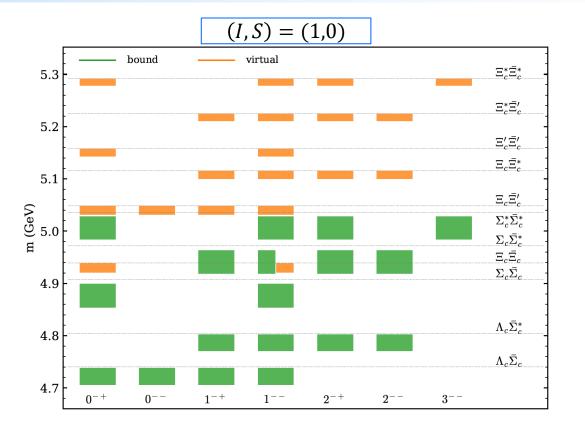
Data taken from BESIII, PRL120(2018)132001

✓ Many 1^{--} states above 4.8 GeV

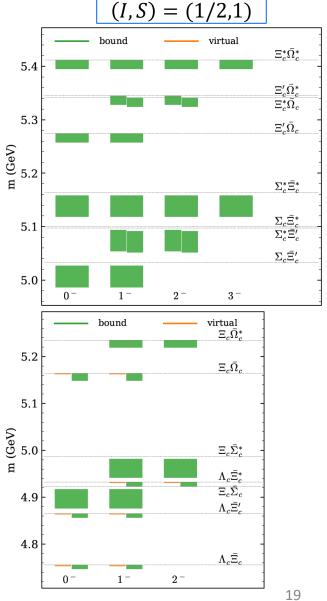
Hidden-charm pentaquarks



More states with exotic quantum numbers



 Many baryon-antibaryon molecular states above 4.7 GeV, beyond the current exp. region



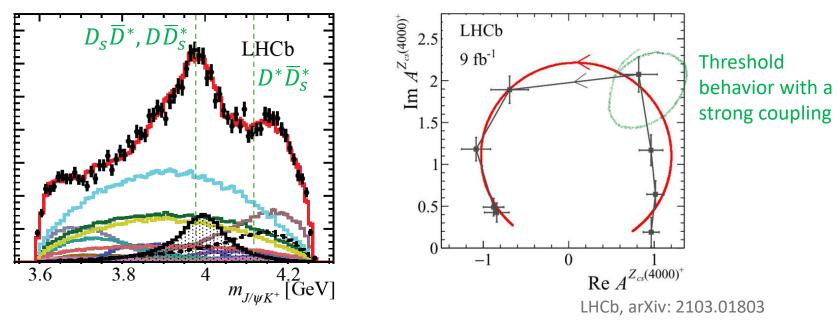
Conclusion

- Threshold structures (threshold cusp or near-threshold peak) are generally expected for a pair of heavy hadrons with attractive interaction; strong attraction, then hadronic molecules below threshold, otherwise threshold cusps (poles are virtual states)
- Structures should be more prominent in bottom than in charm
- 229 hadronic molecules predicted
- (Near-)threshold structures are crucial for understanding the masses of excited hadrons
- Kinematical singularities (threshold cusp, TS) and resonances are NOT exclusive

Experiments Lattice Thank you for your attention! EFT, models

Comments on Z_c and Z_{cs}

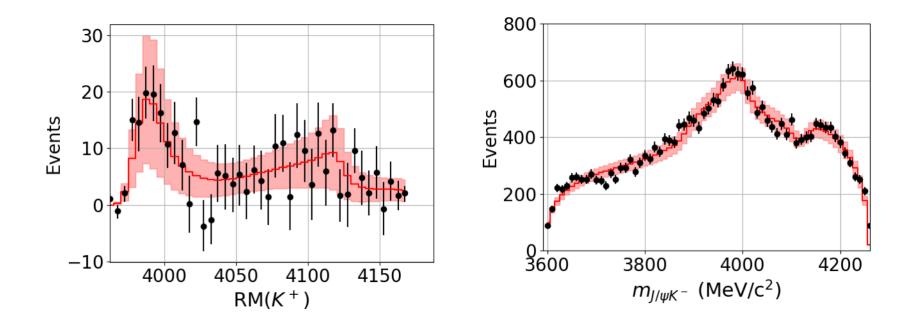
- ✓ Isovector interaction between $D^{(*)}\overline{D}^{(*)}$ from light vector exchange vanishes
- Charmonia exchange could be important here: F.Aceti, M.Bayar, E.Oset et al., PRD90(2014)016003
 no mass hierarchy, a series of charmonia can be exchanged Dong, FKG, Zou, arXiv:2101.01021
 axial-vector meson exchange considered in Yan, Peng, Sanchez Sanchez, Pavon Valderrama 2102.13058
- ✓ Z_c (3900,4020) as $\overline{D}^{(*)}D^*$ virtual states
- ✓ $Z_{cs}(3985)$ as $D_s \overline{D}^*$, $D \overline{D}_s^*$ virtual state; there should also be a $D^* \overline{D}_s^*$ state around 4.1 GeV Z. Yang, X. Cao, FKG, J. Nieves, M. Pavon Valderrama, arXiv:2011.08725



Comments on *Z_c* and *Z_{cs}*

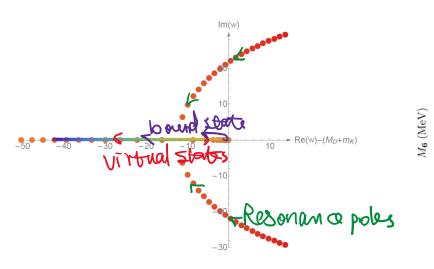
✓ Simultaneous fit to the BESIII and LHCb Z_{cs} data: Z_{cs} as virtual states

Ortega, Entem, Fernandez, 2103.07781



Bound state, virtual state and resonance

- Bound state: pole below threshold on real axis of the first Riemann sheet of complex energy plane
- Virtual state: pole below threshold on real axis of the second Riemann sheet
- Resonance: pole in the complex plane on the second Riemann sheet



Plots from Matuschek, Baru, FKG, Hanhart, 2007.05329;

 $m_{\phi}\,({
m MeV})$ M.-L. Du et al., PRD98(2018)094018

resonance

400

300

Ø

2650

2600

2550

2500

2450 2400 2350

2300

2250

2200

bound state virtual state

200

resonance

threshold

bound state

 $\begin{array}{ccc}
 250 & \Gamma_{6} \\
 200 & 2
 \end{array}$

(MeV)

intual state

600

 $\frac{150}{100}$

500

pole

2 POQ

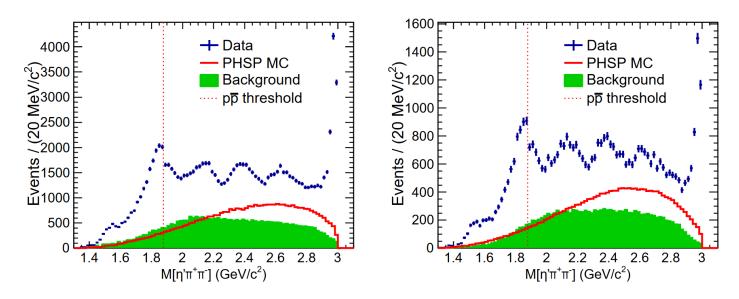
For $\frac{1}{1/a_0 - i k}$, only bound or virtual state poles are possible

Hound state

Phenomenology

• $p\bar{p}$ threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

BESIII, PRL117(2016)042002



Drastic drop:

- \blacktriangleright there should be a pole near the $p\bar{p}$ threshold
- $ightarrow p \overline{p}$ is not the driving channel

• $D^{(*)}\overline{D}^{(*)}$ should be the driving channel for $X(3872), Z_c(3900), Z_c(4020)$