Spin and axial chemical potential

Matteo Buzzegoli

Dipartimento di Fisica e Astronomia & INFN, Firenze

October 08 2020

EUROPEAN CENTRE FOR THEORETICAL STUDIES IN NUCLEAR PHYSICS AND RELATED AREAS FONDAZIONE BRUNO KESSLER

SPIN AND HYDRODYNAMICS IN Relativistic Nuclear Collisions

Motivations

Relativistic heavy ion collisions allow to look for

- Quantum effects on fluids (Polarization and thermal vorticity)
- Local parity violation in QCD (via the Chiral Magnetic Effect)

Measurable effects of axial chemical potential?

[K. Fukushima, D. E. Kharzeev and H. J. Warringa, 2010, Jinfeng Liao]

Main results

Based on [F. Becattini, MB, A. Palermo, G. Prokhorov 2009.13449]

Local parity violation

Look for axial imbalance with the polarization of hadrons independently of the magnetic field

Polarization and helicity

$$\mathbf{S}_{0,\chi} \simeq \frac{g_h}{2} \zeta_A \,\hat{\mathbf{p}} \quad h_\chi \simeq \frac{g_h}{2} \zeta_A \qquad \zeta_A = \frac{\mu_A}{T}$$

Axial imbalance induces parity breaking terms in the helicity of hadrons

Helicity from axial imbalance

Helicity from thermal vorticity

Spin and axial chemical potential

Mean spin vector with axial imbalance

$$\begin{split} S^{\mu}(p) &= S^{\mu}_{\chi}(p) + S^{\mu}_{\varpi}(p) \\ S^{\mu}_{\chi}(p) &\simeq \frac{g_{h}}{2} \frac{\int_{\Sigma} \mathrm{d}\Sigma \cdot p \, \zeta_{\mathrm{A}} n_{\mathrm{F}} \left(1 - n_{\mathrm{F}}\right)}{\int_{\Sigma} \mathrm{d}\Sigma \cdot p \, n_{\mathrm{F}}} \frac{\varepsilon p^{\mu} - m^{2} \hat{t}^{\mu}}{m\varepsilon} \leftarrow \quad \text{Axial imbalance} \\ S^{\mu}_{\varpi}(p) &= \frac{1}{8m} \epsilon^{\mu\rho\sigma\tau} p_{\tau} \frac{\int_{\Sigma} \mathrm{d}\Sigma_{\lambda} p^{\lambda} n_{F} (1 - n_{F}) \partial_{\rho} \beta_{\sigma}}{\int_{\Sigma} \mathrm{d}\Sigma_{\lambda} p^{\lambda} n_{F}} \leftarrow \quad \text{Thermal vorticity} \end{split}$$

Mean spin vector with axial imbalance

$$\begin{split} S^{\mu}(p) &= S^{\mu}_{\chi}(p) + S^{\mu}_{\varpi}(p) \\ S^{\mu}_{\chi}(p) &\simeq \frac{g_{h}}{2} \frac{\int_{\Sigma} \mathrm{d}\Sigma \cdot p \, \zeta_{\mathrm{A}} n_{\mathrm{F}} \left(1 - n_{\mathrm{F}}\right)}{\int_{\Sigma} \mathrm{d}\Sigma \cdot p \, n_{\mathrm{F}}} \frac{\varepsilon p^{\mu} - m^{2} \hat{t}^{\mu}}{m\varepsilon} \leftarrow \quad \text{Axial imbalance} \\ S^{\mu}_{\varpi}(p) &= \frac{1}{8m} \epsilon^{\mu\rho\sigma\tau} p_{\tau} \frac{\int_{\Sigma} \mathrm{d}\Sigma_{\lambda} p^{\lambda} n_{F} (1 - n_{F}) \partial_{\rho} \beta_{\sigma}}{\int_{\Sigma} \mathrm{d}\Sigma_{\lambda} p^{\lambda} n_{F}} \leftarrow \quad \text{Thermal vorticity} \end{split}$$

 ζ_A changes sign event by event Average over multiple events

$$\langle \langle S^{\mu}(p) \rangle \rangle = \underbrace{\langle S^{\mu}_{\chi}(p) \rangle}_{\chi} + \langle \langle S^{\mu}_{\varpi}(p) \rangle \rangle$$
$$\langle \langle \zeta_{A} \rangle \rangle = 0 \qquad \langle \langle \zeta^{2}_{A} \rangle \rangle \neq 0$$

Given the density matrix $\widehat{\rho}$

• Wigner function

$$W_{+}(x,p)_{AB} = \theta(p^{0})\theta(p^{2}) \int \frac{\mathrm{d}^{4}y}{(2\pi)^{4}} \mathrm{e}^{-\mathrm{i}p \cdot y} \operatorname{tr} \left[\hat{\rho} : \bar{\Psi}_{B}(x+y/2)\Psi_{A}(x-y/2) :\right]$$

• Spin vector

$$S^{\mu}(p) = \frac{1}{2} \frac{\int_{\Sigma} d\Sigma \cdot p \operatorname{tr} \left[\gamma^{\mu} \gamma^{5} W_{+}(x, p) \right]}{\int_{\Sigma} d\Sigma \cdot p \operatorname{tr} \left[W_{+}(x, p) \right]}$$

In a nuclear collision Σ is the freeze-out hypersurface

Local thermodynamic equilibrium

[Becattini, MB, Grossi, Particles 2 (2019) 2, 197-207]

Hydrodynamic limit

At Local therm. eq. and by neglecting dissipative terms:

$$\widehat{\rho}_{\rm LE} = \frac{1}{Z_{\rm LE}} \exp\left[-\int_{\Sigma} \mathrm{d}\Sigma_{\mu}(y) \left(\widehat{T}^{\mu\nu}(y)\beta_{\nu}(y) - \zeta_{A}(y)\widehat{j}_{\rm A}^{\mu}(y)\right)\right]$$
$$W(x,p) = \operatorname{tr}\left[\widehat{\rho}\,\widehat{W}(x,p)\right]$$

Slowly varying $\beta \Rightarrow$ Taylor expansion

 $\beta_{\nu}(y) = \beta_{\nu}(x) + \underbrace{\frac{1}{2}}_{\text{Thermal vorticity } \varpi} [(y-x)^{\mu} + \cdots]_{\text{Thermal vorticity } \varpi} (y-x)^{\mu} + \cdots$ $\widehat{\rho}_{\text{LE}} \simeq \frac{1}{Z_{\text{LE}}} \exp\left[-\beta(x) \cdot \widehat{P} + \frac{1}{2}\varpi_{\mu\nu}(x)\widehat{J}_{x}^{\mu\nu} + \int_{\Sigma} d\Sigma_{\rho}\zeta_{A}\widehat{j}_{A}^{\rho}\right]$

 \widehat{P} is the total four-momentum

Linear response theory

In nuclear collisions ζ_A is supposed to be small

$$e^{\widehat{A}+\widehat{B}} = e^{\widehat{A}} + \int_0^1 dz \, e^{z\widehat{A}} \, \widehat{B} \, e^{-z\widehat{A}} \, e^{\widehat{A}} + \cdots,$$

$$\widehat{A} = -\beta(x) \cdot \widehat{P}, \quad \widehat{B} = \frac{1}{2} \varpi_{\mu\nu}(x) \widehat{J}_x^{\mu\nu} + \int_{\Sigma} \mathrm{d}\Sigma_{\rho}(y) \zeta_A(y) \widehat{j}_A^{\rho}(y).$$

Wigner function

$$\langle \widehat{W}_{+}(x,p) \rangle_{\rm LE} \simeq \langle \widehat{W}_{+}(x,p) \rangle_{\beta(x)} + \Delta W_{+}(x,p)$$
$$\Delta W_{+}(x,p) = \int_{\Sigma} d\Sigma_{\rho} \zeta_{A} \int_{0}^{1} dz \langle \widehat{W}_{+}(x,p) \widehat{j}_{A}^{\rho}(y+iz\beta) \rangle_{c,\beta(x)}$$

$$\langle \widehat{O} \rangle_{\beta(x)} = \frac{1}{Z} \operatorname{tr} \left[\exp[-\beta(x) \cdot \widehat{P}] \widehat{O} \right] \qquad \langle \widehat{O}_1 \widehat{O}_2 \rangle_c \equiv \langle \widehat{O}_1 \widehat{O}_2 \rangle - \langle \widehat{O}_1 \rangle \langle \widehat{O}_2 \rangle$$

Matteo Buzzegoli (Unifi)

Hadronic axial current

- $\hat{j}^{\mu}_{\rm A}$ is the color singlet axial current
- Decompose it on the multi-hadronic Hilbert space

[S. Weinberg, The Quantum theory of fields. Vol. 1]

$$\widehat{j}_{A}^{\mu}(x) = \sum_{\substack{N=0\\M=0}}^{\infty} \sum_{\substack{j_{1},\dots,j_{N}\\k_{1},\dots,k_{M}}} \int \frac{\mathrm{d}^{3}q_{1}'}{2\varepsilon_{1}'} \cdots \int \frac{\mathrm{d}^{3}q_{N}'}{2\varepsilon_{N}'} \int \frac{\mathrm{d}^{3}q_{1}}{2\varepsilon_{1}} \cdots \int \frac{\mathrm{d}^{3}q_{M}}{2\varepsilon_{M}}$$
$$\widehat{a}_{j_{1}}^{\dagger}(q_{1}') \cdots \widehat{a}_{j_{N}}^{\dagger}(q_{N}') \widehat{a}_{k_{1}}(q_{1}) \cdots \widehat{a}_{k_{M}}(q_{M}) J^{\mu}(q',q,x)^{j_{1},\dots,j_{N},k_{1},\dots,k_{M}}$$

- $\langle \widehat{W}^h_+ \, \widehat{j}^\rho_A \rangle_{c,\beta} \to$ contribution from the same species h
- predominant contribution: $N = M = 1, j_1 = k_1 = h$

$$J^{\mu}(q',q,x)^{hh} = \langle 0|\hat{a}_{h,\sigma'}(q')\hat{j}^{\mu}_{A}(x)\hat{a}^{\dagger}_{h,\sigma}(q)|0\rangle = \langle q',\sigma'|\hat{j}^{\mu}_{A}(x)|q,\sigma\rangle$$
$$= \frac{\mathrm{e}^{\mathrm{i}t\cdot x}}{(2\pi)^{3}}\bar{u}_{\sigma'}(q')\left[G_{A1}(t^{2})\gamma^{\mu}\gamma^{5} + \frac{t^{\mu}}{2m_{h}}G_{A2}(t^{2})\gamma^{5}\right]u_{\sigma}(q)$$
$$t = q'-q$$

Form factors G_{A1} and G_{A2} depend on the flavour-space transformation properties of the axial current

Matteo Buzzegoli (Unifi)

Wigner function

First order correction on axial imbalance

$$\langle \widehat{W}_{+}(x,p) \rangle_{\rm LE} \simeq \langle \widehat{W}_{+}(x,p) \rangle_{\beta(x)} + \int_{\Sigma} \mathrm{d}\Sigma_{\rho} \zeta_{A} \int_{0}^{1} \mathrm{d}z \langle \widehat{W}_{+}(x,p) \widehat{j}_{A}^{\rho}(y+\mathrm{i}z\beta) \rangle_{c,\beta(x)}$$

using the normal mode expansion of the Dirac field and standard thermal field theory techniques

$$\begin{split} \widehat{W}_{+}(x,p)\rangle_{\beta(x)} &= \frac{m + \gamma^{\mu}p_{\mu}}{(2\pi)^{3}}\delta(p^{2} - m^{2})\theta(p_{0})n_{\mathrm{F}}(p) \\ \Delta W_{+ab}(x,p) &= \int_{\Sigma} \mathrm{d}\Sigma_{\rho} \,\,\zeta_{A} \int_{0}^{1} \frac{\mathrm{d}z}{(2\pi)^{6}} \int \frac{\mathrm{d}^{3}k\mathrm{d}^{3}k'}{4\varepsilon_{k}\varepsilon_{k'}}\delta^{4}\left(p - \frac{k + k'}{2}\right)n_{\mathrm{F}}(k)(1 - n_{\mathrm{F}}(k')) \\ &\times \mathrm{e}^{\mathrm{i}(k-k')(x-y)}\mathrm{e}^{z(k-k')\beta} \,\,\mathcal{A}^{\rho}(k,k')_{ab} \\ n_{\mathrm{F}}(k) &= \frac{1}{\mathrm{e}^{\beta(x)\cdot k} + 1} \\ \mathcal{A}^{\rho}(k,k')_{ab} \equiv (k'+m) \left[G_{A1}\left(t^{2}\right)\gamma^{\rho}\gamma^{5} + \frac{k'^{\rho} - k^{\rho}}{2m}G_{A2}\left(t^{2}\right)\gamma^{5}\right](k+m) \end{split}$$

Polarization

First order correction on axial imbalance

$$S^{\mu}_{\chi}(p) = \frac{1}{2} \frac{\int_{\Sigma} \mathrm{d}\Sigma \cdot p \operatorname{tr} \left[\gamma^{\mu} \gamma^{5} \Delta W_{+}\right]}{\int_{\Sigma} \mathrm{d}\Sigma \cdot p \operatorname{tr} \left[\langle \widehat{W}_{+} \rangle_{\beta}\right]}$$

Polarization

First order correction on axial imbalance

$$S_{\chi}^{\mu}(p) = \frac{1}{2} \frac{\int_{\Sigma} d\Sigma \cdot p \operatorname{tr} \left[\gamma^{\mu} \gamma^{5} \Delta W_{+}\right]}{\int_{\Sigma} d\Sigma \cdot p \operatorname{tr} \left[\langle \widehat{W}_{+} \rangle_{\beta}\right]}$$

$$S_{\chi}^{\mu}(p) = -\frac{2}{\mathcal{D}} \int_{\Sigma} d\Sigma_{\lambda}(x) \cdot p \int_{0}^{1} \frac{dz}{(2\pi)^{6}} \int \frac{d^{3}k}{2\epsilon_{k}} \int \frac{d^{3}k'}{2\epsilon_{k'}} \delta^{4} \left(p - \frac{k + k'}{2}\right)$$

$$\times \int_{\Sigma} d\Sigma_{\rho}(y) \zeta_{A}(y) e^{\mathrm{i}(k - k')(x - y)} n_{\mathrm{F}}(k) (1 - n_{\mathrm{F}}(k')) e^{z(k - k')\beta} \mathcal{B}^{\mu\rho}(k, k')$$

$$\mathcal{D} = \frac{4m}{(2\pi)^{3}} \int_{\Sigma} d\Sigma \cdot p \, \delta(p^{2} - m^{2}) \theta(p_{0}) n_{\mathrm{F}}(p)$$

$$\mathcal{B}^{\mu\rho}(k, k') = G_{A1}(t^{2}) \left[\eta^{\mu\rho}(m^{2} + k \cdot k') - k^{\rho} k'^{\mu} - k^{\mu} k'^{\rho}\right]$$

$$+ \frac{1}{2} G_{A2} \left(t^{2}\right) (k'^{\mu} - k^{\mu}) (k'^{\rho} - k^{\rho})$$

Hydrodynamic approximation

- Integral in $S^{\mu}_{\chi}(p)$ decays on microscopic length scales
- ζ_A varies on longer length scales, in the hydrodynamic picture

$$\begin{split} \int_{\Sigma} \mathrm{d}\Sigma_{\rho}(y) \,\zeta_{A}(y) \mathrm{e}^{\mathrm{i}(k-k')(x-y)} &\simeq \zeta_{A}(x) \int_{\Sigma} \mathrm{d}\Sigma_{\rho}(y) \,\mathrm{e}^{\mathrm{i}(k-k')(x-y)} \\ &= \zeta_{A}(x) \int_{\sigma_{\pm}} \mathrm{d}\Sigma_{\rho}(y) \,\mathrm{e}^{\mathrm{i}(k-k')(x-y)} + \zeta_{A}(x) \int_{\Sigma_{\mathrm{B}}} \mathrm{d}\Sigma_{\rho}(y) \,\mathrm{e}^{\mathrm{i}(k-k')(x-y)} \\ &- \mathrm{i}(k-k')_{\rho}\zeta_{A}(x) \int_{\Omega_{\mathrm{B}}} \mathrm{d}^{4}y \,\mathrm{e}^{\mathrm{i}(k-k')(x-y)} \\ &\simeq \zeta_{A}(x) \hat{t}_{\rho}(2\pi)^{3} \delta^{3}(\mathbf{k}-\mathbf{k'}) \end{split}$$

in the center-of-mass frame: $\hat{t}_{\rho} = \delta_{\rho}^{0}$

$$S_{\chi}^{\mu}(p) \simeq \frac{g_h}{2} \frac{\int_{\Sigma} d\Sigma \cdot p \, \zeta_A n_F \left(1 - n_F\right)}{\int_{\Sigma} d\Sigma \cdot p \, n_F} \frac{\varepsilon p^{\mu} - m^2 \hat{t}^{\mu}}{m\varepsilon}$$
$$g_h = G_{A1}(0)$$

$$\mathbf{S}_0 = \mathbf{S} - \frac{\mathbf{p}}{\varepsilon(\varepsilon + m)} \mathbf{S} \cdot \mathbf{p}$$

In the rest frame of the hadron

$$\mathbf{S}_{0,\chi} = \frac{g_h}{2} \frac{\int_{\Sigma} \mathrm{d}\Sigma \cdot p \, \zeta_A n_\mathrm{F} \left(1 - n_\mathrm{F}\right)}{\int_{\Sigma} \mathrm{d}\Sigma \cdot p \, n_\mathrm{F}} \hat{\mathbf{p}} \equiv F_{\chi}(\mathbf{p}) \hat{\mathbf{p}}$$

Matteo Buzzegoli (Unifi)

Helicity

Helicity:
$$h(\mathbf{p}) = \mathbf{S}_0(\mathbf{p}) \cdot \hat{\mathbf{p}}$$

Induced by axial imbalance $h_{\chi} = \frac{g_h}{2} \frac{\int_{\Sigma} d\Sigma \cdot p \, \zeta_A n_F \left(1 - n_F\right)}{\int_{\Sigma} d\Sigma \cdot p \, n_F} \equiv F_{\chi}(\mathbf{p})$

A special case:

• ζ_A is almost constant

•
$$(1 - n_{\rm F}) \simeq 1$$

 $\mathbf{S}_{0,\chi} \simeq \frac{g_h}{2} \zeta_A \hat{\mathbf{p}} \qquad h_\chi \simeq \frac{g_h}{2} \zeta_A$

Signature of axial imbalance

Linear effect:
$$\mathbf{S}_{0,\chi} = F_{\chi}(\mathbf{p})\hat{\mathbf{p}}$$
 $h_{\chi} = F_{\chi}(\mathbf{p})$

Mediation of magnetic field is not required

Problem: ζ_A fluctuates over multiple event: $\langle \langle \zeta_A \rangle \rangle = 0$

Search for parity breaking terms

- Average of the square: $\langle \langle \zeta_A^2 \rangle \rangle \neq 0$
- Look for parity breaking terms in the helicity

Helicity and Parity breaking

Symmetries: Parity P and Rotation $\mathsf{R}_J(\pi)$ \rightarrow also sym. of freeze-out surface P in momentum space: $\mathbf{p} \rightarrow -\mathbf{p}$

NO AXIAL CHARGE

AXIAL CHARGE

 $\widehat{\rho}$ is ${\sf P}$ invariant, then Helicity is a pseudoscalar $h_{\rm P}$

$$h(-\mathbf{p}) = -h(\mathbf{p})$$

 $\hat{\rho}$ is **not** P invariant, then Helicity has a scalar part: $h_{\rm S}$

$$h_{\rm S}(-\mathbf{p}) = h_{\rm S}(\mathbf{p})$$

 $h_{\chi} = F_{\chi}(\mathbf{p})$ is a scalar

$$h = h_{\rm P} + h_{\rm S}$$

Model independent analysis

Consider particles emitted at midrapidity, i.e. transverse momentum $(p_z = 0)$: $\mathbf{p} \to (p_T, \phi)$

 $h = h_{\rm P} + h_{\rm S}$ From rotational symmetry $\phi \to \pi - \phi$ and reflection properties $\phi \to \pi + \phi$:

$$h_P(p_T, \phi) = \sum_k P_k(p_T) \sin[(2k+1)\phi]$$
$$h_S(p_T, \phi) = \sum_k S_k(p_T) \cos[2k\phi]$$

Local parity violation $S_k(p_T) \neq 0$ Global parity conservation $\langle \langle S_k(p_T) \rangle \rangle = 0$

Helicity square

Helicity-helicity correlator

 $\langle h_1 h_2(\Delta \phi) \rangle =$ correlator between two hyperons emitted in the same event with angles ϕ and $\phi + \Delta \phi$

$$\langle h_1 h_2(\Delta \phi) \rangle = \frac{1}{N} \int d^2 \mathbf{p}_{T1} d^2 \mathbf{p}_{T2} n(\mathbf{p}_{T1}, \mathbf{p}_{T2}) \delta(\phi_2 - \phi_1 - \Delta \phi) \times h_1(\mathbf{p}_{T1}) h_2(\mathbf{p}_{T2})$$

Local parity violation \rightarrow Positive correlation at large angles

E.g. at $\Delta \phi = \pi$ same sign of h_1 and h_2

Spin and axial chemical potential

Helicity-helicity correlator

From leading harmonics $\rightarrow \bar{S}_0, \bar{P}_0 = \text{transverse momentum average}$

$$\langle h_1 h_2(\Delta \phi) \rangle \simeq \frac{1}{2\pi} \int_0^{2\pi} \mathrm{d}\phi \left(\bar{S}_0^2 + \bar{P}_0^2 \sin^2 \phi \cos \Delta \phi \right) = \bar{S}_0^2 + \frac{1}{2} \bar{P}_0^2 \cos \Delta \phi$$

Signature of local parity violation

A constant term in $\langle \langle h_1 h_2(\Delta \phi) \rangle \rangle$

Matteo Buzzegoli (Unifi)

Spin and axial chemical potential

- Local parity violation in relativistic nuclear collisions can be detected by measuring polarization of e.g. Λ hyperons
- Search for parity breaking terms in the helicity azimuthal dependence
- Spin as a probe of axial chemical potential

Thanks for the attention!

Backup

Local parity violation - Signature by CME

Probe for chirality: charge separation

Chirality + Magnetic Filed = Chiral Magnetic Current $\mathbf{j} = \frac{\mu_A}{2\pi^2} \mathbf{B}$

An evidence for Chiral Magnetic Effect in relativistic heavy ion collisions is yet to be confirmed.

Ambiguity of experimental results

 \bullet Possible background of correlations \rightarrow Isobars [Voloshin PRL (2010)] Theoretical uncertainties

- Evolution of the magnetic field
- Axial transport

Global thermal equilibrium

$$\widehat{\rho} = \frac{1}{Z} \exp\left[-\beta \cdot \widehat{P} + \frac{1}{2} \varpi_{\mu\nu} \widehat{J}^{\mu\nu} + \zeta \, \widehat{Q} + \zeta_{A} \, \widehat{Q}_{A}\right]$$
$$u^{\mu} \text{ fluid velocity}$$
Temperature: $\beta^{\mu} = \frac{1}{T} u^{\mu}$ Rotation inside $\varpi_{\mu\nu} = -\partial_{\mu}\beta_{\nu}$ Electric chemical potential $\zeta = \frac{\mu}{T}$ Chiral chemical potential $\zeta_{A} = \frac{\mu_{A}}{T}$

Electric and Magnetic field are inside the stress-energy tensor

$$\widehat{T}^{\mu\nu} \rightarrow \widehat{P}^{\mu}, \ \widehat{J}^{\mu\nu}$$

Equilibrium configurations

$$\partial_{\mu}\widehat{T}^{\mu\nu} = 0, \quad \partial_{\mu}\widehat{j}^{\mu} = 0, \quad \partial_{\mu}\widehat{j}^{\mu}_{A} = 0$$

Max Entropy $\rightarrow \widehat{\rho}_{LTE} = \frac{1}{Z} \exp\left[-\int_{\Sigma} d\Sigma_{\mu} \left(\widehat{T}^{\mu\nu}\beta_{\nu} - \zeta\,\widehat{j}^{\mu} - \zeta_{A}\,\widehat{j}^{\mu}_{A}\right)\right]$

Global equilibrium is reached only if

$$\partial_{\mu}\beta_{\nu} + \partial_{\nu}\beta_{\mu} = 0, \quad \partial^{\mu}\zeta = 0, \quad \partial_{\mu}\zeta_{A} = 0$$

Solution: $\beta_{\mu} = b_{\mu} + \overline{\omega}_{\mu\nu} x^{\nu} b_{\mu}, \overline{\omega}_{\mu\nu}, \zeta, \zeta_{A} \text{ are const.}$

 ϖ contains local acceleration ${\bf a}$ and rotation ${\bf \Omega}$