Quantum features of acceleration and vorticity in relativistic hydrodynamics

1911.04545, 1906.03529, 2003.11119

<u>G. Yu. Prokhorov</u>^{1,2}, O. V. Teryaev^{1,2} and V. I. Zakharov¹

ECT* Online workshop «Spin and hydrodynamics in relativistic nuclear collisions», 5 to 16 October 2020, Online Event

Institute of Theoretical and Experimental Physics (ITEP), Moscow
 Joint Institute for Nuclear Research (JINR), BLTP, Dubna

Contents

- Introduction: QFT and hydrodynamics
- Emergent **conical geometry** in the **Zubarev** density operator
- Instability below Unruh temperature
- Chiral vortical effect for spin ½, spin 1 and higher spins and gravitational anomaly
- Conclusions

Introduction

Introduction: motivation from phenomenology

In noncentral collisions of heavy ions, huge magnetic fields and a huge angular momentum arise. *Differential* rotation - different at different points: vorticity and vortices.

– Rotation 25 orders of magnitude *faster* than the rotation of the Earth:

the vorticity is about 10²² sec⁻¹

- Acceleration is of the same order of magnitude as vorticity (as the components of the same tensor): contributes to polarization.
- [I. Karpenko and F. Becattini, Nucl. Phys., A982:519–522, 2019]
- Another mechanism: accelerations due to the tension of the hadron string (acceleration is much higher of the order of Λ_{QCD})

$$e^+e^- \to \gamma^* \to q\bar{q} \to \text{hadrons}$$

[P. Castorina, D. Kharzeev, H. Satz, Eur. Phys. J., C52:187–201, 2007]

Chiral anomaly

Holography

- [K. Landsteiner, E. Megias, F. Pena-Benitez. Phys. Rev. Lett. 107, 021601 (2011).]
- [M. Stone and J. Kim, Phys. Rev. D98, no. 2, 025012 (2018).]
- [S. P. Robinson, F. Wilczek Phys.Rev.Lett. 95 (2005) 011303 MIT-CTP-3561 gr-qc/0502074.]

Although the gravitational chiral anomaly **is not important** in **volume**, it is significant at the **boundary** or at the **horizon**. Gauge chiral anomaly and CVE

$$j_5^{\mu} = n_5 u^{\mu} + \frac{\mu^2 + \mu_5^2}{2\pi^2} \omega^{\mu} + \frac{\mu}{2\pi^2} B^{\mu}$$

[D. T. Son and P. Surowka, Phys. Rev. Lett. 103 (2009) 191601.] [A. V. Sadofyev, V. I. Shevchenko and V. I. Zakharov, Phys. Rev. D 83 (2011) 105025.]

Gravitational part

$$j_5^{\lambda} = (\frac{T^2}{6} + \frac{\mu^2 + \mu_5^2}{2\pi^2})\omega^{\lambda}$$

Chiral anomaly

 $\nabla_{\mu}j_{5}^{\mu} = -\frac{Q^{2}e^{2}}{16\pi^{2}\sqrt{-a}}\varepsilon^{\mu\mu\alpha\beta}F_{\mu\nu}F_{\alpha\beta} + \frac{1}{384\pi^{2}\sqrt{-g}}\varepsilon^{\mu\mu\rho\sigma}R_{\mu\nu\kappa\lambda}R_{\rho\sigma}^{\kappa\lambda}$

gauge part

Holography

- [M. Stone and J. Kim, Phys. Rev. D98, no. 2, 025012 (2018).]
- [S. P. Robinson, F. Wilczek Phys.Rev.Lett. 95 (2005) 011303 MIT-CTP-3561 gr-qc/0502074.]

Although the gravitational chiral anomaly **is not important** in **volume**, it is significant at the **boundary** or at the **horizon**. Gauge chiral anomaly and CVE

$$j_5^{\mu} = n_5 u^{\mu} + \frac{\mu^2 + \mu_5^2}{2\pi^2} \omega^{\mu} + \frac{\mu}{2\pi^2} B^{\mu}$$

[D. T. Son and P. Surowka, Phys. Rev. Lett. 103 (2009) 191601.] [A. V. Sadofyev, V. I. Shevchenko and V. I. Zakharov, Phys. Rev. D 83 (2011) 105025.]

Gravitational part

$$j_5^{\lambda} = (\frac{T^2}{6} + \frac{\mu^2 + \mu_5^2}{2\pi^2})\omega^{\lambda}$$

 $j_5^{\lambda} = (\frac{T^2}{6} + \frac{\mu^2 + \mu_5^2}{2\pi^2})\omega^{\lambda}$

anomaly **is not important** in **volume**, it is significant at the **boundary** or at the **horizon**.

Introduction: problems

Vorticity	\leftrightarrow	Magnetic field
Acceleration	\leftrightarrow	Electric field

It is logical to consider *acceleration* effects in addition to vorticity.

Problems

- 1) Quantum effects in hydrodynamics in the case of **acceleration**?
- 2) Quantum anomalies and chiral vortical effect in the case of higher spins (spin 1, 3/2, etc.)?
- 3) Quantum anomalies and higher order terms in the current (third order $\omega^2 \omega^\lambda$ and $a^2 \omega^\lambda$)?

Emergent conical geometry in the Zubarev density operator

Zubarev density operator for a medium with a thermal vorticity tensor

$$\begin{split} \widehat{\rho} &= \frac{1}{Z} \exp \left[-b_{\mu} \widehat{P}^{\mu} + \frac{1}{2} \varpi_{\mu\nu} \widehat{J}^{\mu\nu} + \zeta \widehat{Q} \right] \\ \overline{\rho} &= \frac{1}{Z} \exp \left[-b_{\mu} \widehat{P}^{\mu} + \frac{1}{2} \varpi_{\mu\nu} \widehat{J}^{\mu\nu} + \zeta \widehat{Q} \right] \\ \mathbf{Generators of Lorentz} \\ \mathbf{transformations} \\ \widehat{J}^{\mu\nu} &= -2\alpha^{\rho} \widehat{K}_{\rho} - 2w^{\rho} \widehat{J}_{\rho} \\ \widehat{K}^{\mu} - \text{boost (associated with acceleration)} \\ \widehat{J}^{\mu} - \text{angular momentum (associated with vorticity)} \end{split}$$

Temperature and **acceleration** are **independent** parameters: different temperature ranges can be considered in an accelerated medium

in contrast of:

Unruh effect: if a Minkowski vacuum is created, then medium temperature **is related** to acceleration

Effects of acceleration from Zubarev operator

Perturbation theory in **boost generator** was constructed to describe **acceleration** effects

$$\langle \hat{O}(x) \rangle = \langle \hat{O}(0) \rangle_{\beta(x)} + \sum_{N=1}^{\infty} \frac{(-1)^N a^N}{N!} \int_0^{|\beta|} d\tau_1 d\tau_2 \dots d\tau_N \langle T_\tau \hat{K}_{-i\tau_1 u} \dots \hat{K}_{-i\tau_N u} \hat{O}(0) \rangle_{\beta(x),c} \,.$$

In the fourth order of perturbation theory, the following terms are possible:

$$\langle \hat{T}^{\mu\nu} \rangle = (\rho_0 + A_1 T^2 |a|^2 + A_2 |a|^4) u^{\mu} u^{\nu} - (p_0 + A_3 T^2 |a|^2 + A_4 |a|^4) \Delta^{\mu\nu}$$

$$+ (A_5 T^2 + A_6 |a|^2) a^{\mu} a^{\nu} + \mathcal{O}(a^6) \qquad \Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu} u^{\nu} ,$$

Second-order terms were found in [M. Buzzegoli, E. Grossi, and F. Becattini, JHEP, 10: 091, 2017]

• We have found the **4th order** terms for **Dirac** fields, for **scalar** fields – the calculation of 5-point correlators.

Effects of acceleration from Zubarev operator: results (*m=0*)

$$\langle \hat{T}^{\mu\nu} \rangle_{\text{fermi}}^{0} = \left(\frac{7\pi^{2}T^{4}}{60} + \frac{T^{2}|a|^{2}}{24} - \frac{17|a|^{4}}{960\pi^{2}} \right) u^{\mu}u^{\nu} - \left(\frac{7\pi^{2}T^{4}}{180} + \frac{T^{2}|a|^{2}}{72} - \frac{17|a|^{4}}{2880\pi^{2}} \right) \Delta^{\mu\nu} + \mathcal{O}(a^{6})$$

$$\begin{split} \langle \hat{T}^{\mu\nu} \rangle_{\text{real}}^{0} &= \left(\frac{\pi^{2}T^{4}}{30} + \frac{T^{2}|a|^{2}}{12} - \frac{11|a|^{4}}{480\pi^{2}} \right) u^{\mu}u^{\nu} - \left(\frac{\pi^{2}T^{4}}{90} - \frac{T^{2}|a|^{2}}{18} \right. \\ &+ \frac{19|a|^{4}}{1440\pi^{2}} \right) \Delta^{\mu\nu} + \left(\frac{T^{2}}{12} - \frac{|a|^{2}}{48\pi^{2}} \right) a^{\mu}a^{\nu} + \mathcal{O}(a^{6}) \,. \end{split}$$

The energy-momentum tensor vanishes at the Unruh temperature

$$\langle \hat{T}^{\mu\nu} \rangle = 0 \qquad (T = T_U)$$

Corresponds to the results of **non-perturbative** calculation:

13

• talk of A. Palermo

[F. Becattini, Phys. Rev. D 97, no. 8, 085013 (2018)] • [F. Becattini, M. Buzzegoli, A. Palermo, e-Print: 2007.08249]

Thus, a consequence of the Unruh effect is justified.

[G. P., O. V. Teryaev, and V. I. Zakharov. JHEP, 03:137, 2020]

Space-time with conical singularity

The effects of acceleration can also be investigated from the point of view of an **accelerated observer**. In this case, the **Rindler coordinates** are to be used: $do^{2} = m^{2} dm^{2} + dm^{2} + dm^{2}$

$$ds^2 = -r^2 d\eta^2 + dr^2 + d\mathbf{x}_\perp^2$$

Passing to imaginary time:

$$ds^2 = \boxed{r^2 d\eta^2 + dr^2} + d\mathbf{x}_{\perp}^2$$

It describes a flat two-dimensional cone with an angular deficit $2\pi - a/T$. This metric contains a **conical singularity** at r = 0. T⁻¹

Dictionary for translation *Thermodynamic* characteristics in *Geometrical*:

Inverse acceleration \iff distance from the vertex.

Inverse proper **temperature** \iff circumference.

[G. P., O. V. Teryaev, and V. I. Zakharov. JHEP, 03:137, 2020]

The duality of statistical and geometric approaches

The following expressions were obtained for the vacuum value of T_2^2 in spacetime with a cosmic string [V. P. Frolov and E. M. Serebryanyi, Phys. Rev. D 35, 3779 (1987)]

String:

$$\langle T_2^2 \rangle_{s=0} = \frac{\nu^4}{480\pi^2 r^4} + \frac{\nu^2}{48\pi^2 r^4} - \frac{11}{480\pi^2 r^4}$$
$$\langle T_2^2 \rangle_{s=1/2} = \frac{7\nu^4}{960\pi^2 r^4} + \frac{\nu^2}{96\pi^2 r^4} - \frac{17}{960\pi^2 r^4}$$

111~14

Passing to the Euclidean Rindler spacetime, we obtain

 $-2\pi 4$

The coincidence will be for **massive** fields as well

15

Rindler:

$$\rho_{s=0} = \frac{\pi T}{30} + \frac{T |a|}{12} - \frac{11|a|}{480\pi^2},$$

$$\rho_{s=1/2} = \frac{7\pi^2 T^4}{60} + \frac{T^2 |a|^2}{24} - \frac{17|a|^4}{960\pi^2}$$

 π^{21} , 12

The obtained expressions <u>correspond</u> to the energy calculated using the **Zubarev** density operator in inertial frame.

[G. P., O. V. Teryaev, and V. I. Zakharov. JHEP, 03:137, 2020]

The duality of statistical and geometric approaches

The duality of two approaches has been discovered: statistical and geometrical.

Despite the correspondence of the results, theories are *different*: in statistics, the perturbation theory was considered for effective interaction with the boost generator, and the curvilinear coordinates were not used in any way.

Unruh effect from statistics

The effects of **vorticity** are controlled by **anomalies**

[D. Kharzeev, K. Landsteiner, Andreas Schmitt, and Ho-Ung Yee. Strongly Interacting Matter in Magnetic Fields. Lect. Notes Phys., 871:pp.1–624, 2013]

I. Acceleration effects are controlled by the Unruh effect.

Unruh effect from statistics

The effects of **vorticity** are controlled by **anomalies**

[D. Kharzeev, K. Landsteiner, Andreas Schmitt, and Ho-Ung Yee. Strongly Interacting Matter in Magnetic Fields. Lect. Notes Phys., 871:pp.1–624, 2013]

I. Acceleration effects are controlled by the Unruh effect.

But the Unruh effect also follows from the gravitational anomaly [S. P. Robinson, F. Wilczek, Phys. Rev. Lett., 95:011303, 2005].

Unruh effect from statistics

The effects of **vorticity** are controlled by **anomalies**

[D. Kharzeev, K. Landsteiner, Andreas Schmitt, and Ho-Ung Yee. Strongly Interacting Matter in Magnetic Fields. Lect. Notes Phys., 871:pp.1–624, 2013]

I. Acceleration effects are controlled by the Unruh effect.

But the Unruh effect also follows from the **gravitational anomaly** [S. P. Robinson, F. Wilczek, Phys. Rev. Lett., 95:011303, 2005].

II. Therefore, the effects of acceleration are also controlled by <u>anomalies</u>.

Instability below Unruh temperature

Instability below Unruh temperature: acceleration as imaginary chemical potential

The density operator and the covariant Wigner function [F. Becattini, V. Chandra, L. Del Zanna, and E. Grossi, Annals Phys., 338:32-49, 2013] lead to the **integral representation** of energy density

$$\rho = \frac{7\pi^2 T^4}{60} + \frac{T^2 a^2}{24} - \frac{17a^4}{960\pi^2} = 2 \int \frac{d^3 p}{(2\pi)^3} \left(\frac{|\mathbf{p}| + ia}{1 + e^{\frac{|\mathbf{p}|}{T} + \frac{ia}{2T}}} + \frac{|\mathbf{p}| - ia}{1 + e^{\frac{|\mathbf{p}|}{T} - \frac{ia}{2T}}} \right) + 4 \int \frac{d^3 p}{(2\pi)^3} \frac{|\mathbf{p}|}{e^{\frac{2\pi|\mathbf{p}|}{a}} - 1} \qquad (T > T_U) \quad \text{in red: modifications compared to the Wigner function}$$

- In the first integral, the acceleration enters as an imaginary chemical potential ± ^{ia}/₂ [G.P., O. Teryaev, V. Zakharov, Phys. Rev. D 98, no. 7, 071901 (2018)]. Motivation:
 - **Exact match** with the fundamental result from the density operator at $T > T_U$.
 - True limit at $a \to 0$.
 - Some terms can be obtained directly from the Wigner function.

Instability below Unruh temperature: jump of the derivative

Comparing the two temperature regions

$$\rho = \frac{7\pi^2 T^4}{60} + \frac{T^2 a^2}{24} - \frac{17a^4}{960\pi^2} \qquad T > T_U$$

$$\rho = \frac{127\pi^2 T^4}{60} - \frac{11T^2 a^2}{24} - \frac{17a^4}{960\pi^2} - \pi T^3 a + \frac{Ta^3}{4\pi} \qquad T < T_U$$

we see that the values in $T = T_U$ coincide, also the first derivatives turn out to be the same, however, a jump occurs in the second derivative:

$$\rho_{T>T_U}(T \to T_U) = \rho_{T
$$\frac{\partial}{\partial T} \rho_{T>T_U}(T \to T_U) = \frac{\partial}{\partial T} \rho_{T
$$\frac{\partial^2}{\partial T^2} \rho_{T>T_U}(T \to T_U) \neq \frac{\partial^2}{\partial T^2} \rho_{T$$$$$$

[G. P., O. V. Teryaev, V. I. Zakharov, Phys. Rev., D100(12):125009, 2019]

Instability below Unruh temperature: jump of the derivative

The solid blue line is the energy density as a function of temperature, corresponding to the integral representation.

The dashed orange line - the result of the fundamental perturbative calculation based on the density operator.

[G. P., O. V. Teryaev, V. I. Zakharov, Phys. Rev., D100(12):125009, 2019]

Instability at Unruh temperature: source in geometry

In the geometrical language at $T = T_U$ the **cone** transforms into a **plane**. Statistical instability is accompanied by a qualitative **change** in **geometry**.

Instability at Unruh temperature: parallels

At $T = T_U$, the energy density is zero as an evidence of the Unruh effect, while at $T < T_U$ it becomes **negative** (*F. Becattini, Phys. Rev. D* 97, *no.* 8, 085013 (2018)) - evidence of instability. $E_0 > 0$

Negative energy leads to instability: **Superradiance** [*R. Penrose Nuovo Cimento.J. Serie 1 (1969) 252.*]

One of the two particles (photons) into which the particle decays will have an energy **greater** than the original particle, since the second of the particles has gone to a level with **negative energy** in the *ergosphere* and then moved into BH.

Brito, Richard et al. Lect.Notes Phys. 906 (2015) pp.1-237

Investigation of vacuum stability (G. L. Pimentel, A. M. Polyakov and G. M. Tarnopolsky, Rev. Math. Phys. 30, no. 07, 1840013 (2018)). Analytical continuation into instability region $S_{eff}(v) = mT\sqrt{1-V^2}$

Analytical continuation into instability region allowed to show the **smoothness** of the transition

At
$$T < T_U$$
 We also: construct analytical continuation, have discontinuity at the point, show smoothness.

[G. P., O. V. Teryaev, V. I. Zakharov, Phys. Rev., D100(12):125009, 2019]

Instability at Unruh temperature

To study the transition through instability point, let's move on to the variable

 $\eta = e^{\frac{|\mathbf{p}|}{T} + \frac{i|a|}{2T}}$, then the energy will be expressed through integrals of the form

$$I_{s1} = \int_{I_{s1}} \frac{\eta^D d\eta}{(\eta + 1)^2} F(-iy)$$

Where $D = \frac{\partial}{\partial(-iy)}$ is the derivative operator. The integrand contains the **pole of**

the Fermi distribution in the plane of the complex momentum. Integrals can be

Instability at Unruh temperature

The jump in the second derivative $\frac{\partial^2 \rho}{\partial T^2}$ can be shown by direct calculation of the energy in two regions

$$T > T_U \qquad \rho = \frac{a^4}{120\pi^2} + \frac{T^4}{\pi^2} \left(\frac{\pi D}{\sin(\pi D)} \frac{(-iy)^4}{4} + 2iy \frac{\pi D}{\sin(\pi D)} \frac{(-iy)^3}{3} \right) \Big|_{y=\frac{a}{2T}} = \frac{7\pi^2 T^4}{60} + \frac{T^2 a^2}{24} - \frac{17a^4}{960\pi^2}$$

In the region $T < T_{U'}$ the energy density is described by **another polynomial**

$$T < T_U \qquad \rho = \frac{127\pi^2 T^4}{60} - \frac{11T^2 a^2}{24} - \frac{17a^4}{960\pi^2} - \pi T^3 a + \frac{Ta^3}{4\pi}$$

Instability below Unruh temperature and Unruh effect

Effect of instability below the Unruh temperature appears since temperature and acceleration can be considered as independent parameters, unlike Unruh effect.

So these two effects are different (though being related).

Phenomenological consequences?

Hypothetical decay of unstable state (below the Unruh temperature) as a source of hadronisation \rightarrow similar to the picture

[P. Castorina, D. Kharzeev, H. Satz, Eur. Phys. J., C52:187–201, 2007]

Based on the Wigner function ansatz – needs **more fundamental** justification (maybe on the basis of *[F. Becattini, M. Buzzegoli, A. Palermo, e-Print: 2007.08249]* or spacetime with conical singularity)!

Chiral vortical effect

Chiral anomaly

Holography

- [K. Landsteiner, E. Megias, F. Pena-Benitez. Phys. Rev. Lett. 107, 021601 (2011).]
- [M. Stone and J. Kim, Phys. Rev. D98, no. 2, 025012 (2018).]
- [S. P. Robinson, F. Wilczek Phys.Rev.Lett. 95 (2005) 011303 MIT-CTP-3561 gr-qc/0502074.]

Although the gravitational chiral anomaly **is not important** in **volume**, it is significant at the **boundary** or at the **horizon**. Gauge chiral anomaly and CVE

$$j_5^{\mu} = n_5 u^{\mu} + \frac{\mu^2 + \mu_5^2}{2\pi^2} \omega^{\mu} + \frac{\mu}{2\pi^2} B^{\mu}$$

[D. T. Son and P. Surowka, Phys. Rev. Lett. 103 (2009) 191601.] [A. V. Sadofyev, V. I. Shevchenko and V. I. Zakharov, Phys. Rev. D 83 (2011) 105025.]

Gravitational part

$$j_5^{\lambda} = (\frac{T^2}{6} + \frac{\mu^2 + \mu_5^2}{2\pi^2})\omega^{\lambda}$$

CVE for spin ¹/₂: duality

Gravitational anomaly for spin ¹/₂:

[Luis Alvarez-Gaume, et al. Nucl. Phys., B234:269, 1984]

$$\nabla^{\alpha} j^{N}_{\alpha} = \frac{1}{768\pi^{2}\sqrt{-g}} \epsilon^{\alpha\beta\gamma\delta} R_{\alpha\beta\rho\sigma} R^{\rho\sigma}_{\gamma\delta}$$

According to [M. Stone and J. Kim, Phys. Rev. D98, no. 2, 025012 (2018)] the coefficient before the anomaly determines the coefficient T^2 :

Weyl
fermions:
$$\vec{j}_{CVE}^N = \left(\frac{\mu^2}{4\pi^2} + \frac{T^2}{12}\right)\vec{\Omega}$$

Correspondence of **statistical** and **gravitational** approaches (with a **gravitational anomaly** on the horizon)!

CVE for spin ¹/₂: duality

Gravitational anomaly for spin ¹/₂:

[Luis Alvarez-Gaume, et al. Nucl. Phys., B234:269, 1984]

$$\nabla^{\alpha} j^{N}_{\alpha} = \frac{1}{768\pi^{2}} \left\langle -g \right\rangle^{\alpha\beta\gamma\delta} R_{\alpha\beta\rho\sigma} R^{\rho\sigma}_{\gamma\delta}$$

According to [M. Stone and J. Kim, Phys. Rev. D vo. 2, 025012 (2018)] the coefficient before the anomaly determines the coefficient T

Weyl
fermions:
$$\vec{j}_{CVE}^N = \left(\frac{\mu^2}{4\pi^2} + \frac{T^2}{12}\right)\vec{\Omega}$$

Correspondence of **statistical** and **gravitational** approaches (with a **gravitational anomaly** on the horizon)!

CVE for spin 1: problem of the factor 2

• Chiral current for **spin 1** (*magnetic helicity*):

$$K^{\mu} = \frac{1}{\sqrt{-g}} \epsilon^{\mu\nu\rho\sigma} A_{\nu} \partial_{\rho} A_{\sigma}$$

Other definitions of chirality for spin 1:

[M. N. Chernodub, et al. Phys.Rev. D98 (2018) no.6, 065016]

• Chiral anomaly for spin 1:

[A. I. Vainshtein, A. D. Dolgov, V. I. Zakharov, and I. B. Khriplovich, Sov. Phys. JETP 67 (1988) 1326, Zh. Eksp. Teor. Fiz. 94 (1988) 54]

$$< \nabla_{\mu} K^{\mu} > = \frac{1}{96\pi^2} R_{\mu\nu\rho\sigma} \tilde{R}^{\mu\nu\rho\sigma}$$

• According to *[M. Stone and J. Kim, Phys. Rev. D98, no. 2, 025012 (2018).]* the coefficient before the anomaly determines the coefficient T²

$$\frac{(CVE)_{photons}}{(CVE)_{Weyl \ fermions}}|_{black \ hole} = 4$$

$$\frac{(CVE)_{photons}}{(CVE)_{Weyl \ spinor}}|_{Kubo \ relation} = 2$$

33

[A. Avkhadiev, et al. Phys.Rev. D96 (2017) no.4, 045015]

CVE for spin 1: sources of the problem of the factor 2 and possible solutions

• Infrared effects and zero mode?

Landau levels in *magneic* field:

$$E_n = \pm \sqrt{2H(n+1/2) + P_3^2 + H\sigma_3}$$

In the gravitational case the gyromagnetic ratio is **two times smaller** and there is **no zero mode for spin** ¹/₂. *However it may exist for spin 1*:

$$E_{min} = 0$$
, spin 1, gravity

• **Regularization** method?

$$1/R \ll \Omega \ll T$$

one may consider *another* case:

$$\Omega \ll 1/R \ll T$$

[M. N. Chernodub, et al. Phys.Rev. D98 (2018) no.6, 065016]

• The duality $T \leftrightarrow \frac{a}{2\pi}$ of temperature and acceleration?

$$J_{CVE} \sim c_1 T^2 \Omega + c_2 a^2 \Omega$$

may also give *cubic dependence* on spin S^3 (next slide)

Higher spins

Gravitational anomaly for arbitrary spin:

[M. J. Duff, Cambridge Univ. Press, 1982, preprint Ref.TH.3232-CERN]

[A.I. Vainshtein, A.D. Dolgov, V. I. Zakharov, and I.B. Khriplovich, Sov. Phys. JETP 67 (1988) 1326, Zh. Eksp. Teor. Fiz. 94 (1988) 54]

$$\nabla_{\mu}K_{S}^{\mu} = \frac{(-1)^{2S}(2S^{3}-S)}{192\pi^{2}\sqrt{-g}}\epsilon^{\mu\nu\rho\sigma}R_{\mu\nu\kappa\lambda}R_{\rho\sigma}^{\kappa\lambda}$$

- Used in supersymmetry
- Checked in other approaches for 3/2

Prediction for vortical chiral current (CVE) of arbitrary spin:

$$\vec{K}_S = \frac{(-1)^{2S}(2S^3 - S)}{3}T^2\vec{\Omega} \ (gravitational \ anomaly)$$

The statistical approach **does not** reproduce the **cubic dependence** S³ [X. G. Huang, et al. JHEP 03, 084 (2019)]

Parity allows the appearance of 3 types of terms in the **third order** of perturbation theory

$$\langle \hat{j}_5^{\lambda}(x) \rangle^{(3)} = A_1 \omega^2 \omega^{\lambda} + A_2 a^2 \omega^{\lambda} + A_3 (\omega a) a^{\lambda}$$

These coefficients were found in:

[G. Y. Prokhorov, O. V. Teryaev and V. I. Zakharov, JHEP 1902, 146 (2019).]

The coefficients can be found using **Zubarev density operator**: for massive fermions and in the chiral limit. Quantum correlators with three **angular momentum** or **boost operators** and one **current operator**. For example for A_2 :

$$A_{2} = -\frac{1}{6|\beta|^{3}} \left(\int_{0}^{|\beta|} d\tau_{1} d\tau_{2} d\tau_{3} \langle T_{\tau} \left(\hat{K}_{-i\tau_{1}u}^{1} \hat{J}_{-i\tau_{2}u}^{3} + \hat{J}_{-i\tau_{1}u}^{3} \hat{K}_{-i\tau_{2}u}^{1} \right) \hat{K}_{-i\tau_{3}u}^{1} \hat{j}_{5}^{3}(0) \rangle_{\beta(x),c} + \int_{0}^{|\beta|} d\tau_{1} d\tau_{2} d\tau_{3} \langle T_{\tau} \hat{K}_{-i\tau_{1}u}^{1} \hat{K}_{-i\tau_{2}u}^{1} \hat{J}_{-i\tau_{3}u}^{3} \hat{j}_{5}^{3}(0) \rangle_{\beta(x),c} \right),$$

Axial current in the *third order* of perturbation theory:

$$\langle j_5^{\lambda}(x) \rangle_3 = A_1 w^2 w^{\lambda} + A_2 \alpha^2 w^{\lambda} + A_3(w\alpha) \alpha^{\lambda}$$

The results of the calculation of the coefficients:

Axial current is conserved!!!

The solution of the problem of the current conservation identified in the approach with the Wigner function!!!

[G.P. and O. Teryaev, Phys. Rev. D 97, no. 7, 076013 (2018)]

Calculation based on the density operator within the QFT at the final temperature:

$$\langle j^5_{\mu} \rangle_{\rho}(m=0) = \left(\frac{1}{6} \left[T^2 + \frac{|\omega|^2}{4\pi^2}\right] + \frac{\mu^2}{2\pi^2} + \frac{|a|^2}{8\pi^2}\right) \omega_{\mu}$$

The form of higher-order terms *depends on* the **boundary conditions**, which were not taken into account when deriving this formula [*M. Stone and J. Kim, Phys. Rev. D98, no. 2, 025012 (2018), Vilenkin A., Phys. Rev. - 1980. - Vol. D21. - Pp. 2260-2269*].

However it matches the results in the literature:

- the correction $a^2 \omega^{\lambda}$ exactly corresponds to the results [Victor E. Ambrus, JHEP 08 (2020), 016]
- correction $\omega^2 \omega^{\lambda}$ matches results [Vilenkin A., Phys. Rev. 1980. Vol. D21. Pp. 2260-2269]. However, as noted in [M. Stone and J. Kim, Phys. Rev. D98, no. 2, 025012 (2018)] there is a

discrepancy with the gravitational anomaly as seen. Anomaly result is

Calculation based on the density operator within the QFT at the final temperature:

$$\langle j^5_{\mu} \rangle_{\rho}(m=0) = \left(\frac{1}{6} \left[T^2 + \frac{|\omega|^2}{4\pi^2}\right] + \frac{\mu^2}{2\pi^2} + \frac{|a|^2}{8\pi^2}\right) \omega_{\mu}$$

The form of higher-order terms *depends on* the **boundary conditions**, which were not taken into account when deriving this formula [M. Stone and J. Kim, Phys. Rev. D98, no. 2,

025012

Howev A more thorough study of the issue of **boundary conditions** is necessary!

- the correction $a \ \omega$ exactly corresponds to the results [Victor E. Ambrus, JHEP 08 (2020), 016]
- correction $\omega^2 \omega^{\lambda}$ matches results [Vilenkin A., Phys. Rev. 1980. Vol. D21. Pp. 2260-2269]. However, as noted in [M. Stone and J. Kim, Phys. Rev. D98, no. 2, 025012 (2018)] there is a

discrepancy with the gravitational anomaly as seen. Anomaly result is

Conclusions

Conclusions

<u>1.</u> **Quantum** corrections with **acceleration** in the energy-momentum tensor (scalar and Dirac fields, massive and massless) are found.

These corrections:

- controlled by the Unruh effect
- match the predictions of field theory in **spacetime** with **conical singularity** (cosmic strings)

<u>2.</u> A **jump-like behavior** of the observables is observed around the Unruh temperature.

<u>3.</u> There is a *discrepancy* between the predictions of the **gravitational anomaly** and the **statistical** calculations in the case of the chiral vortical effect for **spin 1** (and higher spins).

<u>4.</u> There is a *discrepancy* between the predictions of the **gravitational anomaly** and **statistical** calculations in the case of hirher order (*third-order*) corrections in the chiral current.

Conclusions

The physics of *chiral phenomena* is looking for manifestations of the fundamental effects of **quantum field theory** and **general relativity** in **hydrodynamics** and opens up a unique opportunity to study **quantum anomalies** on the present experimental level.

Thank you for attention!

Introduction: (some) methods for studying vorticity and acceleration effects

1. Kubo formulas.

Flat space

[K. Landsteiner, et al. Lect. Notes Phys., 871:433–468, 2013], [S. Golkar, et al. JHEP, 02:169, 2015]

2. Zubarev quantum-statistical density operator. [M. Buzzegoli, et al. JHEP, 10:091, 2017], [G. P., O. V. Teryaev, and V. I. Zakharov. JHEP, 03:137, 2020]

3. Wigner function for a medium with thermal vorticity. [*F. Becattini, et al. Annals Phys., 338:32–49,2013*], [*W. Florkowski, et al. Prog.Part.Nucl.Phys.,108:103709, 2019*]

4. Field theory in curved space (with a conical singularity). *Curved space* [V. P. Frolov, et al. Phys. Rev., D35:3779–3782, 1987], [J. S. Dowker: Class. Quant. Grav., 11:L55–L60, 1994]

5. Field theory in space of a (rotating) black hole and gravitational anomaly on the horizon of a black hole. [*M. Stone, et al. Phys. Rev., D98(2):025012, 2018*], [*S. P. Robinson, et al. Phys. Rev. Lett., 95:011303, 2005*]

6. Other methods (holography, quantization in cylindrical coordinates ...) [M.N.Chernodub, et al. Phys.Rev.D98(2018)no 6,065016], [K. Landsteiner, et al. Phys.Rev.Lett.,107:021601, 2011]