Theory overview on quarkonium

Baoyi Chen

Tianjin University, China

EXPLORING HIGH-MUB MATTER WITH RARE PROBES

Different P_T quarkonium

Outline

1) Charmonium $(J/\psi, \psi(2S))$ in large QCD medium (AA) $R_{AA}^{J/\psi}, R_{AA}^{\psi(2S)}: R_{AA}(N_p, p_T, y)$ charmonium v_1, v_2, v_3 ,

bottomonium (1S, 2S, 3S) R_{AA} exotic hadrons in AA

2) Charmonium in small colliding system (pA) $R_{AA}^{J/\psi}, R_{AA}^{\psi(2S)}$: color screening + dissociation

3) Photoproduction from EM fields, $(R_{AA} > 1 \text{ at } p_T < 0.1)$ EM field $\rightarrow \gamma + A \rightarrow J/\psi + A$ charmonium at $p_T < 0.1 \text{ GeV} \sim 1/R_A$

Heavy ion collisions

Color screening + parton inelastic collision

Quarkonium $\mathbf{R}_{AA}(N_p, p_T, y)$

LHC collision energy

• J/ψ yield enhanced by **regeneration** in experiments at LHC

 $c + \overline{c} \leftrightarrow J/\psi + g$ $q + c + \overline{c} \leftrightarrow J/\psi + q$

 $N_{AA}^{initial} + N_{AA}^{rege}$ $R_{AA} =$ pp*ncoll

More heavy quark pairs in higher collision energy

Statistical hadronization model, Andronic, et al, J.Phys.G 38 (2011) 124081

$$N_{c\bar{c}}^{dir} = \frac{1}{2} g_c N_{oc}^{th} \frac{I_1(g_c N_{oc}^{th})}{I_0(g_c N_{oc}^{th})} + g_c^2 N_{c\bar{c}}^{th}.$$

$$g_c(T) \sim 1/N_D^{th} \sim e^{\frac{m_D}{T}}, \quad N_{J/\psi}(T) = g_c^2 N_{J/\psi}^{th} \sim e^{\frac{2m_D - m_{J/\psi}}{T}}$$

Coalescence model (quarkonium), Greco, Ko, Rapp, PLB 595 (2004) 202-208 *Thews, Schroedter , Rafelski, PRC* 63, 054905 (2001) *Zhao, BYC, Phys.Lett.B* 776 (2018) 17-21

$$\begin{aligned} \frac{d^2 N_M}{d\mathbf{p}_{\mathrm{T}}^2} &= g_M \int \prod_{i=1}^2 \frac{p_i \cdot d\sigma_i d^3 \mathbf{p}_i}{(2\pi)^3 E_i} \ f_q(x_1, p_1) \ f_{\bar{q}}(x_2, p_2) \\ &\times f_M(x_1, p_1; x_2, p_2) \ \delta^{(2)}(\mathbf{p}_{\mathrm{T}} - \mathbf{p}_{1\mathrm{T}} - \mathbf{p}_{2\mathrm{T}}) \ , \end{aligned}$$

 $c + \overline{c} \rightarrow J/\psi + g$ $q + c + \overline{c} \rightarrow J/\psi + q$

Co-mover model (loss+gain terms), Ferreiro, et al, PLB 731 (2014) 57-63 Eur.Phys.J.C 58 (2008) 437-444

Transport model (TAMU) Ralf Rapp, Xingbo Zhao, Loic Grandchamp, Xiaojian Du, et al

Phys.Rev.C 82 (2010) 064905 Phys.Lett.B 664 (2008) 253-257 Nucl.Phys.A 943 (2015) 147-158

Taesoo Song, Su Houng Lee, Ko, et al, PRC 81 (2010) 034914 Phys.Rev.C 91 (2015) 4, 044909 Transport model (Tsinghua) Pengfei Zhuang, Li Yan, Yunpeng Liu, Kai Zhou, Baoyi Chen, et al,

Phys. Lett. B 607, 107 (2005) Phys. Rev. Lett. 97, 232301 (2006) Phys. Lett. B 726, 725 (2013)

Two-component models: primordial + regenerated

$$i\hbar \frac{\partial}{\partial t}\psi(r,t) = \left[-\frac{\hbar^2}{2m_{\mu}}\bigtriangledown^2 + V(r,t)\right]\psi(r,t)$$

$$|c\bar{c}>=c_{1S}(t)|\,J/\psi>+c_{2S}(t)|\psi(2S)>+\cdots$$

Open quantum approaches are necessary for quarkonium evolution in the medium.

<u>R. Katz, P. B. Gossiaux</u>, 16' <u>B.Z. Kopeliovich</u>, et al, PRC, 15' <u>Taesoo Song, et al, PRC, 15'</u>

Schrodinger model (quantum trajectory method) Michael Strickland, et al, Phys.Lett.B 811 (2020) 135949 JHEP 03 (2021) 235, JHEP 21 (2020) 235

Schrödinger model

BYC, Du, Rapp, et al, Nucl.Part.Phys.Proc. 289-290 (2017) 475-478

Lindblad equation model, Brambilla, Escobedo,Strickland, et al JHEP 05 (2021) 136

Quantum transport model, Xiaojun Yao, Weiyao Ke, Yingru Xu, et al, JHEP 01 (2021) 046 JHEP 02 (2021) 062

Schrödinger–Langevin model Roland Katz, Pol B. Gossiaux Ann. Phys. 368 (2016) 267-295

Others: Kopeliovich, et al, PRC, 15' Taesoo Song, et al, PRC, 15' Alexander Rothkopf, Akamatsu, et al, *JHEP* 07 (2018) 029 Blaizot, et al, *JHEP* 06 (2018) 034

Quarkonium is treated as an open quantum system

Figure 13: Comparison of the evolution of a pair of heavy quarks initially prepared in a J/Ψ state with or without considering the transition into octet states. The screening radius is $r_D = m_D^{-1}$.

Density matrix (singlet-octet), Blaizot, Escobedo, *JHEP* 06 (2018) 034 *Weak coupling between HQ and medium,*

$$\begin{split} \frac{\mathrm{d} \mathbf{D_s}}{\mathrm{d} t} &= i C_F [V_{12} - V_{1'2'}] \, D_{\mathrm{s}} \\ \frac{\mathrm{d} D_{\mathrm{o}}}{\mathrm{d} t} &= -\frac{i}{2N_c} [V_{12} - V_{1'2'}] D_{\mathrm{o}}. \end{split}$$

Lindblad equation

Alexander Rothkopf, Akamatsu, et al, JHEP 07 (2018) 029 Phys.Rev.D 101 (2020) 3, 034011

Time evolution of the occupation numbers of the ground state and the 1st excited state in Cornell potential.

Quarkonium is treated as an open quantum system

p_T dependence

Primordial production V.S. regeneration

Rapidity dependence

• $R_{AA}(y)$ nuclear modification factor with rapidity

More bottomonium reference:

Du, Rapp, He: PRC 96 (2017) ,054901 **Blaizot, Escobedo:** *PRD* 98 (2018), 074007 **BYC, Zhao:** PLB 772 (2017) 819-824

Sequential Regeneration (1S,2S)

Sequential dissociation

Proposed by Satz, et al

Sequential regeneration

 $\partial_{\mu}(\rho_{c}u^{\mu}_{0GP}) = 0$ for charm diffusion

QGP expansion \rightarrow charm flow \rightarrow inherited by rege. Ψ

Quarkonium collective flows

 (v_1, v_2, v_3)

Elliptic flow v_2

Source: Charm recombination, Path-length-difference electromagnetic fields

Directed flow v_1

200 GeV, Au-Au, semi-central collisions

Charmonium directed flows

Charmonium directed flows: \rightarrow Different magnitudes of dissociation in $\pm x$ directions Charm directed flows: \rightarrow charm carry collective flows from QGP expansion

triangular flow v_3

Source: fluctuation of QGP initial energy density

Exotic hadrons in AA

 $(c\overline{c}q\overline{q})$

Exotic hadron $(c\bar{c}q\bar{q})$ in AA

Some reference about X(3872) production in HIC:

Cho. Prog.Part.Nucl.Phys. 95,279-322 (2017); B. Wu, Rapp, EPJA 57 , 122 (2021); Zhang, Liao, et al, PRL 126, 012301 (2021) ; BYC, Liu, et al, 2107.00969 Zhao, Zhuang, et al, Phys.Rev.D 102 (2020) 11, 114001 (fully-heavy tetraquark) In pp: Braaten, et al, Phys.Rev.D 103 (2021) 7, L071901 Esposito, Ferreiro, et al, Eur.Phys.J.C 81 (2021) 669 Huang, Zhao, Zhuang, Phys.Rev.D 103 (2021) 5, 054014 F.K. Guo, Liu, et al, Rev. Mod. Phys. 90, 015004 (2018)

Exotic hadron $(c\bar{c}q\bar{q})$ in AA

AMPT model, Zhang, Liao, et al, <u>PRL 126, 012301 (2021) ;</u>

coalescence model, BYC, Liu, et al, 2107.00969

Cho. Review paper: Prog.Part.Nucl.Phys. 95,279-322 (2017);

quarkonium in p-Pb @5.02 TeV

Nuclear modification factor

Final state interaction is needed to explain different R_{AA} of 1S and 2S.

Collective flow

elliptic flows in small colliding system

CGC model, Bo-wen Xiao, et al, PRL 122 (2019) 17, 172302

Transport model, Du, Rapp, JHEP 03 (2019) 015

In pA: Cold nuclear matter effect dominate the heavy quarkonium elliptic flows.

Quarkonium photoproduction

Photoproduction by EM fields

Strong Lorentz-contracted Electromagnetic field (transverse) approximated as longitudinally moving photons

Photoproduction by EM fields

> 2.76 TeV forward rapidity 2.5<y<4, inclusive J/ψ < $p_T^2 >_{pp}^{J/\psi} = 7.8 (GeV/c)^2$

b=10.2 fm	Hadroproduction 2. $5 < y < 4$	photoproduction
$0 < p_T < 0.04$ GeV/c	0.47×10 ⁻⁵	5.54×10 ⁻⁵
$0 < p_T < 0.1$	2.4×10 ⁻⁵	15 .7×10 ⁻⁵
$0 < p_T < 0.5$	50×10 ⁻⁵	~16 ×10 ⁻⁵
$0 < p_T < 1$	179×10 ⁻⁵	
$0 < p_T < 3$	772×10 ⁻⁵	

Photoproduction

Hadroproduction

Transport + photoproduction

 $\mathbf{b} < 2R_A \text{ or } \mathbf{b} \geq 2R_A$

 $N_{\psi}^{\gamma A} \propto \int dw \frac{dN_{\gamma}}{dw} \sigma_{\gamma A \to J/\psi A} \Gamma_{QGP}^{decay}$

Transport model (heavy quarkonium)

$$\frac{\partial f_{\psi}}{\partial t} + \frac{\vec{p}_{\psi}}{E} \cdot \vec{\nabla}_{x} f_{\psi} = -\alpha_{\psi} f_{\psi} + \beta_{\psi}$$

When $N_{part} \rightarrow 0$ (b > 2R_A), hadroproduction $\rightarrow 0$, photoproduction \rightarrow nonzero, $R_{AA} \rightarrow$ infinity (pT<0.1)

Shi, Zha, BYC, PLB 777 (2018) 399-405

Transport + photoproduction

Sudden enhancement at pT<0.1 GeV/c

More charmonium photoproduction in HIC:

Klein, et al, PRL 92, 142003 (2004) G.Baur, et al, Physics Roports, 2002 Wangmei Zha, zebo Tang, et al, PRC 99 (2019) 6, 061901 et al,...

summary

- We review some *classical and quantum* models developed recently for quarkonium evolutions in the hot medium.
- Quarkonium production mechanisms in *different transverse* momentum bins are discussed in different models.

summary

- We review some *classical and quantum* models developed recently for quarkonium evolutions in the hot medium.
- Quarkonium production mechanisms in *different transverse* momentum bins are discussed in different models.

$$c + \overline{c} \rightarrow J/\psi + g$$
regeneration
$$p_T \sim 1/R_A \leq 0.1 \qquad 3 \sim 5$$

$$\gamma A \rightarrow J/\psi A \qquad gg(q\overline{q}) \rightarrow J/\psi g$$
Photoproduction
Initial production
Thank you very much
for your attention !