# Prospects for open charm (and strange hadron) measurements with NA60+

# Francesco Prino

for the NA60+ collaboration

ECT\*, Trento, October 13<sup>th</sup> 2021

# **NA60+** at the low $\sqrt{s}$ frontier

- NA60+ proposed experiment at CERN SPS
- Goal: study of hard and electromagnetic processes at CERN-SPS energies and investigation of the high-μ<sub>B</sub> region of the QCD phase diagram



• Hard processes:

Probe the Quark-Gluon Plasma and study its transport properties

#### **Electromagnetic** processes

- Information on the temperature of the system (QGP and/or hadronic)
- Information on the nature of the phase transition
- Insight into the approach to chiral symmetry restoration

# NA60+ data taking strategy

#### Beam energy scan (BES) at the CERN SPS in the interval √s<sub>NN</sub>≈6-17 GeV

- $\rightleftharpoons$  ~4 week periods/year with Pb beams  $\rightarrow$  Pb-Pb collisions
- Corresponding periods with proton beams: **p-A reference**, with different nuclear targets  $\Rightarrow$  BES example: E<sub>beam</sub> = 20, 30, 40, 80, 120, 160 GeV/nucleon

#### • High precision measurements of rare probes:

Comprehensive measurement of full **dilepton** spectrum

- ✓ Thermal dimuons from threshold up to 3 GeV
- ✓ Charmonium: J/ $\psi$ ,  $\psi$ (2S),  $\chi_c$
- ⇒ Hadronic measurements:
  - $\checkmark$  Charmed mesons and baryons (D<sup>0</sup>, D<sup>±</sup>, D<sub>s</sub>,  $\Lambda_{c})$
- Statistics goal at each energy of BES:

 $\Rightarrow$  ~4.10<sup>6</sup> reconstructed  $\mu^+\mu^-$  pairs from thermal dimuons

✓ Factor ≈20 over NA60, >10<sup>4</sup> over RHIC/LHC experiments

 $\Rightarrow$  >~ 1.5·10<sup>4</sup> reconstructed J/ψ  $\rightarrow$  μ<sup>+</sup>μ<sup>-</sup>

 $\Rightarrow$  ~10<sup>7</sup> reconstructed D<sup>0</sup> mesons

| Facility/<br>Experiment | $\sqrt{s_{\rm NN}}$<br>(GeV) | μ <sub>B</sub><br>(MeV) | Interaction rate     | Dileptons | Charm |
|-------------------------|------------------------------|-------------------------|----------------------|-----------|-------|
| SPS<br>NA60+            | ~6-17.3                      | 440-220                 | >MHz                 | yes       | yes   |
| SPS<br>NA61/SHINE       | ~5-17.3                      | 540-220                 | 5 kHz                | no        | yes   |
| SIS100<br>CBM, HADES    | 2.7-5.5                      | 740–510                 | >MHz                 | yes       | yes   |
| RHIC<br>STAR            | 3–19.6                       | 710-200                 | $\sim 1 \text{ kHz}$ | yes       | yes   |
| NICA<br>MPD             | 4-11                         | 620–320                 | $\sim$ 7 kHz         | yes       | yes   |
| Nuclotron<br>BM@N       | 2.3-3.5                      | 800–660                 | 20–50 kHz            | (yes)     | no    |
| J-PARC-HI<br>DHS, D2S   | 2-6.2                        | 840–480                 | >MHz                 | yes       | (yes) |

#### **Open charm with NA60+: why?**

# **Open charm at SPS: what can we learn?**

- Almost unexplored energy domain
   ⇒No results available below top SPS energy
- Charm production in p-A collisions
  - Sensitive to **nuclear PDFs**

✓ Q<sup>2</sup>~10–40 GeV<sup>2</sup> and 0.1<x<sub>Bj</sub><0.3 (anti-shadowing and EMC) ⇒ Possible sensitivity to **intrinsic charm** 

- Charm hadron yield and v<sub>2</sub> in A-A collisions
  - Constrain estimates of the charm diffusion coefficient
  - ⇒Charm quark thermalization in a short-lived QGP
  - Insight into hadronization mechanism
    - $\checkmark$  Enhanced D\_s/D and  $\Lambda_c/D$  ratios in case of quark recombination
  - ⇒ Charm cross section sensitive to **chiral symmetry restoration**:
    - Enhancement of charm production at chiral restoration where the threshold for production of a DD pair may be reduced

General Priman et al., Lect. Notes Phys. 814 (2011), 1



### Charm cross section in p-A

- Unexplored energy domain
- Comparison of existing data to PYTHIA (LO) event generator



### Charm cross section in p-A

- Unexplored energy domain
- Comparison of existing data to pQCD calculations (MNR) at NLO, NLL and NNLO



ALICE, PRC94 (2016) 054908

□ Vogt, Int.J.Mod.Phys.E12 (2003) 211

ALICE, arXiv:2105.06335

### **Nuclear PDFs**

#### Sensitivity to nuclear PDFs in p-A collisions

 $\rightleftharpoons$  Probe EMC and anti-shadowing for  $\sqrt{s_{_{NN}}}$  ~ 10-20 GeV

⇒ Perform measurements with various nuclear targets to access the A-dependence of nPDF

• NA60+ offers a unique opportunity to investigate the large  $x_{Bj}$  region



# Intrinsic charm?

 Existence of a nonperturbative intrinsic heavy quark component in the nucleon is a rigorous QCD prediction

- ⇒ Extrinsic contributions arise from gluon splitting in pQCD
- ⇒ Intrinsic charm: nonperturbative component in proton wave function
  - ✓ E.g. 5-quark Fock state |uudcc>



Unambiguous experimental confirmation still missing

 $\Rightarrow$  Intrinsic charm (IC) contribution dominant at large x and high p<sub>T</sub>





# Charm in Pb-Pb: $dN/dp_T$ and $R_{AA}$

#### • Insight into QGP transport properties

- ⇔Charm diffusion coefficient larger in the hadronic phase than in the QGP around T<sub>c</sub>
- Hadronic phase represents a large part of the collision evolution at SPS energies
  - $\checkmark$  Sensitivity to hadronic interactions
  - Test models which predict strongest inmedium interactions in the vicinity of the quark-hadron transition
- Measurement also important for precision estimates of diffusion coefficients at the LHC



Prino, Rapp, JPG43 (2016) 093002

### **Charm in Pb-Pb: elliptic flow**

#### Study charm thermalization (hydrodynamization...) at low $\sqrt{s_{NN}}$

 $\Rightarrow$  Current measurements of HF-decay electron v<sub>2</sub> at  $\sqrt{s_{NN}}$ =39 and 62 GeV/c from RHIC BES show:

- ✓ Smaller  $v_2$  than at √s=200 GeV
- ✓ Not conclusive on  $v_2$ >0



# **Open charm hadrochemistry**

- Reconstruct different charm hadron species to get insight into hadronization mechanism
- Strange/non-strange meson ratio (D<sub>s</sub>/D):
  - D<sub>s</sub>/D enhancement expected in A-A collisions due to hadronisation via recombination in the strangeness rich QGP







# **Open charm hadrochemistry**

- Reconstruct different charm hadron species to get insight into hadronization mechanism
- **Baryon/meson** ratios ( $\Lambda_c/D$ ):

Sected to be enhanced in A-A in case of hadronisation via coalescence

 $\Rightarrow$  Interesting also in p-A since  $\Lambda_c/D^0$  in pp (p-Pb) at LHC is higher than in e<sup>+</sup>e<sup>-</sup>

 $\Lambda_{c}^{+}\,/\,D^{0}$  $V_{c}^{+}/D_{0}^{-1}$ ALICE **ALICE** Preliminary ---- pp,  $\sqrt{s} = 5.02$  TeV ---- Ko et.al: three guark (0-5%) (b) - PYTHIA  $\sqrt{s_{_{\rm NN}}} = 5.02 \text{ TeV}, |y| < 0.5$ ----- Ko et.al: di-quark, (0-5%) PYTHIA 8 (Monash)  $(\Lambda_c^+ + \Lambda_c^-)/(D^0 + \overline{D^0})$ PYTHIA.CF Ko et.al: with flow (0-10%) 0.8 PYTHIA 8 (CR Mode 2) Catania, coal.+frag. (10-80%) HERWIG 7 Catania, coal. (10-80%) 0.7 — — Tshingua (10-80%) Catania, fragm.+coal — 0–10% Pb–Pb Rapp et.al (0-20%) M. He and R. Rapp: 30-50% Pb-Pb 0.6E SH model + PDG SH model + RQM 0.5 0.4 0.3 THERMUS 0.2 2 6 **0.1**⊦ Filled markers: pp measured reference Transverse Momentum ( $p_{\tau}$ ) (GeV/c) Open markers: pp p\_-extrapolated reference 20 10 10 STAR, PRL 127 (2021) 092301 p\_ (GeV/c) p\_ (GeV/c) ALL-PUB-488630, arXiv:2011.06078 ALI-PREL-321702



### **Charm cross section in Pb-Pb**

- Total charm cross section in A-A collisions
  - Measured so far by NA60 in In-In collisions from intermediate-mass dimuons with 20% precision
    NA60, EPJ C59 (2009) 607

✓ Upper limit from NA49 measurements of D<sup>0</sup> mesons
□ NA49, PRC73 (2006) 034910

- Precise measurement requires to reconstruct all meson and baryon ground states (D<sup>0</sup>, D<sup>+</sup>, D<sub>s</sub><sup>+</sup> and  $\Lambda_c^+$  and their antiparticles)
- Charm cross section directly sensitive to chiral symmetry restoration:

Enhancement of charm production at chiral restoration where the threshold for production of a DD pair may be reduced
Friman et al., Lect. Notes Phys. 814 (2011), 1

• Charm cross section ideal reference for charmonia

#### **Open charm with NA60+: how?**

### **Charm hadron reconstruction**

- Charmed mesons and baryons can be reconstructed from their decays into 2 or 3 charged hadrons
- Small production cross section + small(ish) BRs
   ⇒ Require large samples of minimum-bias collisions
- Mean proper decay lengths  $c\tau$  ~60-300  $\mu m$ 
  - High precision on tracking and vertexing required to discriminate the charm-hadron decay vertex from the interaction point

| Hadron            | Mass (MeV/c <sup>2</sup> ) | <b>c</b> τ (μm) | Decay                                                                                                           | BR                      |
|-------------------|----------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------|-------------------------|
| $D^0$             | 1865                       | 123             | $\rightarrow K^{-}\pi^{+}$                                                                                      | 3.95%                   |
| $D^+$             | 1869                       | 312             | $\rightarrow K^{-}\pi^{+}\pi^{+}$                                                                               | 9.38%                   |
| $D_{s}^+$         | 1968                       | 147             | $\rightarrow \phi \pi^+ \rightarrow K^- K^+ \pi^+$                                                              | 2.24%                   |
| $\Lambda_{c}^{+}$ | 2285                       | 60              | $ \begin{array}{c} \rightarrow pK^{-}\pi^{+} \\ \rightarrow pK^{0} \\ \rightarrow \Lambda \pi^{+} \end{array} $ | 6.28%<br>1.59%<br>1.30% |



### **Charm hadron reconstruction**

- Charmed mesons and baryons can be reconstructed from their decays into 2 or 3 charged hadrons
- Invariant mass analysis of fully reconstructed displaced decay-vertex topologies

Decay products reconstructed in the vertex spectrometer

Background reduction via geometrical selections based on displaced decay vertex topology (cτ ~60-300 µm)

#### • Detector requirements:

Need high precision on track and vertex reconstruction

Substantially better performance with state-of-the-art Monolithic Active Pixel Sensors

NA60+, https://cds.cern.ch/record/2673280





#### • Fast simulations for central Pb-Pb collisions:

 $\Rightarrow$  D-meson signal simulation:  $p_T$  and y distributions from POWHEG-BOX + PYTHIA



#### • Fast simulations for central Pb-Pb collisions:

⇒ D-meson signal simulation:  $p_T$  and y distributions from POWHEG-BOX+PYTHIA ⇒ Combinatorial background: dN/dp<sub>T</sub> and dN/dy of  $\pi$ , K and p from NA49



#### • Fast simulations for central Pb-Pb collisions:

 $\Rightarrow$  D-meson signal simulation:  $p_T$  and y distributions from POWHEG-BOX+PYTHIA

- $\Rightarrow$  Combinatorial background: dN/dp<sub>T</sub> and dN/dy of  $\pi$ , K and p from NA49
- ⇒ Parametrized simulation of VT detector resolution + track reconstruction with Kalman filter



#### • Fast simulations for central Pb-Pb collisions:

 $\Rightarrow$  D-meson signal simulation:  $p_T$  and y distributions from POWHEG-BOX+PYTHIA

- $\Rightarrow$  Combinatorial background: dN/dp<sub>T</sub> and dN/dy of  $\pi$ , K and p from NA49
- ⇒ Parametrized simulation of VT detector resolution + track reconstruction with Kalman filter

Reconstruct D-meson decay vertex from decay tracks



#### • Fast simulations for central Pb-Pb collisions:

- $\Rightarrow$  D-meson signal simulation:  $p_T$  and y distributions from POWHEG-BOX+PYTHIA
- $\Rightarrow$  Combinatorial background: dN/dp<sub>T</sub> and dN/dy of  $\pi$ , K and p from NA49
- ⇒ Parametrized simulation of VT detector resolution + track reconstruction with Kalman filter
- Reconstruct D-meson decay vertex from decay tracks
- Geometrical selections based on displaced decay vertex topology



# Normalization of signal

#### • Normalization of **signal yield per event** based on:

⇒ (Assumption on) charm production cross section

✓ Not measured at SPS energies

 $\Rightarrow$  Nuclear overlap function T<sub>AA</sub> (Glauber)

 $\Rightarrow$  Fragmentation fractions of charm quarks in different charm hadron species, f(c $\rightarrow$ H<sub>c</sub>)

✓ Not universal: different in pp at LHC and e<sup>+</sup>e<sup>-</sup> (ep) collisions



# NA60+ physics performance : D<sup>0</sup>

#### • With 10<sup>11</sup> minimum bias Pb-Pb collisions (1 month of data taking)

- $\Rightarrow$  More than 3.10<sup>6</sup> reconstructed D<sup>0</sup> in central Pb-Pb collisions at  $\sqrt{s_{NN}}$ =17.3 GeV
- Measurement feasible also at lower collision energies with statistical precision at the percent level
- $\Rightarrow$  Allows for differential studies of yield and v<sub>2</sub> vs. p<sub>T</sub>, y and centrality



NA60+, https://cds.cern.ch/record/2673280

# NA60+ physics performance : D<sub>s</sub>+

• Selections on displaced decay vertex topology and K+K<sup>-</sup> invariant mass



### NA60+ physics performance : D<sub>s</sub>+

Geometrical selections on displaced decay vertex topology

Signal to background in central Pb-Pb:

 $\checkmark$  Initial S/B ~3·10<sup>-10</sup>  $\rightarrow$  after selections (not optimized) S/B >~ 10<sup>-2</sup>



$$D_{s}^{+} \rightarrow \phi \pi \rightarrow KK\pi$$



# NA60+ physics performance : D<sub>s</sub>+

• With 10<sup>11</sup> minimum bias Pb-Pb collisions (1 month of data taking)

 $\Rightarrow$  Measurement of D<sub>s</sub> yield feasible with statistical precision of few percent

✓ NOTE: still room to improve the selections in the simulations



### **Open charm hadrons**

| Hadron                      | Mass (MeV/c <sup>2</sup> ) | <b>c</b> τ (μm) | Decay                                              | BR             |
|-----------------------------|----------------------------|-----------------|----------------------------------------------------|----------------|
| D <sup>0</sup>              | 1865                       | 123             | $\rightarrow \mathbf{K}^{-}\pi^{+}$                | 3.95%          |
| $D^+$                       | 1869                       | 312             | $\rightarrow K^{-}\pi^{+}\pi^{+}$                  | 9.38%          |
| D <sub>s</sub> <sup>+</sup> | 1968                       | 147             | $\rightarrow \phi \pi^+ \rightarrow K^- K^+ \pi^+$ | 2.24%          |
| ۸ <sup>+</sup>              | 2285                       | 60              | $\rightarrow pK^{-}\pi^{+}$                        | 6.28%<br>1 59% |
|                             | 2200                       |                 | $\rightarrow \rho \Lambda \pi^+$                   | 1.30%          |

- Fast simulations demonstrate feasibility of measuring of D<sup>0</sup> and D<sub>s</sub> mesons with very good statistical precision
- Measurements of **D**<sup>+</sup> meson expected to be within reach

 $\Rightarrow$  Longer lifetime (-> larger displacement) and higher abundance than D<sub>s</sub> meson

• Studies ongoing for  $\Lambda_c$  performance

Short lifetime, more challenging separation of decay vertex

Study also reconstruction of decays with a neutral strange hadron in the decay products

# Strange hadrons from V0 decay topology

- Fast simulations for  $\Lambda$  and K<sup>0</sup><sub>s</sub> reconstruction
- Excellent performance

⇒ Very large statistical significance and S/B ratio

- Can be exploited in the reconstruction of:
  - $\Rightarrow \Lambda_c$  baryons
  - $\Rightarrow$   $\Xi$  and  $\Omega$  hyperons





# Strange hadrons from V0 decay topology

- Fast simulations for  $\Lambda$  and K<sup>0</sup><sub>s</sub> reconstruction
- Excellent performance

⇒ Very large statistical significance and S/B ratio

• Can be exploited in the reconstruction of:

 $\Rightarrow \Lambda_{c}$  baryons

 $\Rightarrow$   $\Xi$  and  $\Omega$  hyperons

- Studies of strangeness production with NA60+ interesting per se
  - Complement/extend NA57 measurements of strange baryon yields
  - Complement/extend NA49 measurements of anisotropic flow via precise measurements of hyperon v<sub>n</sub> coefficients



#### A NA57, J.Phys.G 32 (2006) 427



### $\Phi \rightarrow K^+K^-$

• Fast simulations for  $\Phi \to K^+K^-$  reconstruction from tracks in the VT

Invariant mass analysis after subtracting combinatorial background from event mixing

 NA60+ should be able to reconstruct ~10<sup>10</sup> φ mesons in Pb-Pb collisions in the 0-5% centrality class, with a much better resolution then NA60



# Summary and prospects

- First fast simulation studies demonstrate great perspectives for open charm reconstruction with NA60+
  - ⇒ Measure production in an (almost) unexplored energy domain
  - Characterize transport properties of QGP by measuring yield, v<sub>2</sub> and hadrochemistry
- High resolution of monolithic active pixel sensors crucial for these analyses
- Further studies ongoing to extract the performance for charm baryons and to consolidate the estimates for charm mesons and strange hadrons





### NA60+ detector concept



- Muon spectrometer to measure dimuons downstream of absorber
  - Muon spectrometer length needs to be varied, to cover midrapidity at different √s
- Vertex spectrometer for precise tracking close to the interaction point

### NA60+ detector concept



- Muon spectrometer to measure dimuons downstream of absorber
  - ✓ Muon spectrometer length needs to be varied, to cover midrapidity at different √s
- Vertex spectrometer for precise tracking close to the interaction point