

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Prospects for dilepton measurements with MPD at NICA

Sudhir Pandurang Rode for the MPD collaboration

Joint Institute for Nuclear Research (JINR), Dubna

 $ECT^* \ Workshop \\ Exploring \ High \ \mu_B \ Matter \ With \ Rare \ Probes$

October 11-15, 2021

Outline

- Motivation
- MPD apparatus
- Di-electrons and challenges
 - Conversion rejection
 - Rejection of di-electrons from π^0 Dalitz decays
- Conclusions

Motivation

- $\sqrt{s_{NN}}$: 4-11 GeV
- Designed luminosity: 10²⁷ cm⁻² s⁻¹
- Explore high μ_B matter.
- Search for Critical end point and 1st order phase transition.
- Multi Purpose Detector (MPD) experiment: Rich and exciting di-electron program.

Motivation

- Intermediate Mass Region: Excitation function of the inverse-slope parameter, T_s (M = 1.5 – 2.5 GeV).
- Closely related to the initial temperature T_i of the fire ball: "thermometer" for the heavy-ion collisions.
- Low Mass Region: At SPS and RHIC, the excess in dilepton yields: broadening of the *ρ* meson spectral function -> restoration of chiral symmetry.
- Sum of QGP and hadronic contributions proportional to fireball lifetime: "chronometer" for heavy-ion collisions

MPD setup: Full configuration

- 4π configuration.
- TPC, TOF, ECAL, FHCal, FFD, ITS and EndCaps.
- To be constructed in two stages.

MPD setup: Stage I

- Stage 1: IFC, IOF, ECAL, FIICal,
- Stage 2: + ITS + EndCaps.
- Stage 1: To be ready for commissioning with beam in 2023.
- Beam: Bi-Bi at $\sqrt{s_{NN}}$ = 9.2 GeV expected for first day of operation.

Time Projection Chamber (TPC)

• Read-out chambers (ROC): MWPC.

● 12 ROCs per end-cap: 53 pad rows per ROC.

- Gas mixture of 90% Ar+10% CH_4
- Maximum design event rate for the TPC: 7 kHz.
- The TPC vessel and ROCs are done: Electronics in mass production.

Length	340 cm
Vessel outer radius	$140~{ m cm}$
Vessel inner radius	$27 \mathrm{~cm}$
Drift vol. outer radius	$133 \mathrm{~cm}$
Drift vol. inner radius	$34 \mathrm{~cm}$
Drift vol. length	163 cm (of each half)
HV electrode type	Central membrane
Electric field strength	$\sim 140~{ m V/cm}$
Default magnetic field	$0.5 \mathrm{T}$
Drift gas mixture	$90\% { m Ar}{+}10\% { m CH}_4$
Pressure	Atm. pressure $+2$ mbar
Gas amplification factor	$\sim 10^4$
Drift velocity	$5.45~{ m cm}/{ m \mu s}$
Drift time	$< 30 \ \mu { m s}$
Temperature stability	< 0.5 °C
Readout chambers	24 (12 per end-plate)
Segmentation in ϕ	30°
Inner pad size	$5 \mathrm{x} 12 \mathrm{mm}^2$
Outer pad size	$5 \text{x} 18 \text{ mm}^2$
Total number of pads	95232
Pad row count	53
Maximum event rate	7 kHz ($L = 10^{27} \text{ cm}^{-2} \text{s}^{-1}$)
Electronics shaping time	\sim 180-190 ns
Signal-to-noise ratio	30:1
Signal dynamical range	10 bits
Sampling rate	10 MHz
Sampling depth	310 time buckets
Two-track resolution	$\sim 1~{ m cm}$

Time Projection Chamber (TPC)

p, GeV/c

Time-Of-Flight (TOF)

- 40% of MRPCs ready: Mass production ongoing.
- Designed Time and coordinate resolution of ≈ 80 ps and ≈ 0.5 cm, respectively.
- TOF matching efficiency: about 90% and it drops below 80% for track momenta below 250 MeV/c.
 - Correct identification of protons and π^{+/-}
 (K) with 90% (80%) upto p ≈ 2.5 (1.7)
 GeV/c.

Electromagnetic Calorimeteter (ECal)

Inner shell D=3360 mm, L=6244 mr

- scintillator sandwiches.
 Full configuration: 50 half-sectors in full
 - azimuth (25 full sectors): Range, $360^{\circ}/25 = 14.4^{\circ}$
- Measures deposited energy of the track and detect particles of energy from 10 MeV to a few GeV.
- Energy resolution is about 6% at 1 GeV.

Forward Hadron Calorimeter (FHCal)

 $2 < |\eta| < 5$

- FHCal: Event centrality and reaction plane measurements with potential for event triggering.
- Two identical detectors, each with 44 modules placed approx. 3.2 m upstream and downstream from the center of the detector.
- The module transverse size of 15 $x 15 \text{ cm}^2$.
- Modules and FEE boards are produced and tested.
- Relative calorimeter energy resolution, $\sigma_{\rm E}$ /E \approx 55%/ $\sqrt{\rm E}$ (GeV).

Fast Forward Detector (FFD)

- FFD: Provides fast triggering of A+A collisions and generates the start-time (T0) pulse generation for the ToF detector with a time resolution better than 50 ps.
- Consists of 20 Cherenkov modules based on Planacon multianode MCP-PMTs with each module consists of a 10 mm lead converter, a 15 mm quartz radiator.
- Almost 100% L0 trigger efficiency for central to mid-central collisions.

- Uncertainty of the longitudinal position of the reconstructed primary vertex increased by factor 2-3 for low track multiplicity events.
- Transverse and longitudinal position uncertainties for TPC reconstructed primary tracks increases at low $p_{\rm T}$.

• Maximum achievable relative transverse momentum resolution for charged particles of 2% as function of $p_{\rm T}$ (0.2-0.8 GeV/c) and η ($|\eta| < 1$).

Particle Identification with MPD

- Momentum (GeV/c) For PID, TPC (dEdx information), TOF (Time-Of-Flight) and ECal (E/p) is used.
- TPC+TOF is good enough to identify electrons with decent purity.
- However, ECal helps to gain even higher purity.

Efficiency and Purity

- Typical cuts on electrons:
- 1. $|\eta| < 1$

W

X

- 2. DCA < 3σ
- 3. $p_{\rm T} > 50 \,{\rm MeV/c}$
- 4. at least 39 hits in TPC
- 5. 2σ electron PID in TPC/TOF

- Single electron reconstruction efficiency: about 40% using TPC-TOF-ECal eID above 250 MeV/c.
- Purity of 70-90% at high $p_{\rm T}$ using TPC-TOF for eID and almost 100% using additional information from ECal.

ECal helps on the hadron rejection

- TPC and TOF PID is sufficient to get decent purity however, high pt and high invariant mass region is still contaminated.
- Nevertheless, additional information from ECal helps removing the contamination.

• Possible main sources of dielectrons

i	Dilepton channels	
1	Dalitz decay of π^0 :	$\pi^0 \to \gamma e^+ e^-$
2	Dalitz decay of η :	$\eta \to \gamma l^+ l^-$
3	Dalitz decay of ω :	$\omega ightarrow \pi^0 l^+ l^-$
4	Dalitz decay of Δ :	$\Delta \to N l^+ l^-$
5	Direct decay of ω :	$\omega ightarrow l^+ l^-$
6	Direct decay of ρ :	$ ho ightarrow l^+ l^-$
7	Direct decay of ϕ :	$\phi \rightarrow l^+ l^-$
8	Direct decay of J/Ψ :	$J/\Psi ightarrow l^+ l^-$
9	Direct decay of Ψ' :	$\Psi' \to l^+ l^-$
10	Dalitz decay of η' :	$\eta' \to \gamma l^+ l^-$
11	pn bremsstrahlung:	$pn \rightarrow pnl^+l^-$
12	$\pi^{\pm}N$ bremsstrahlung:	$\pi^{\pm}N \to \pi N l^+ l^-$

- Dalitz decays are major source of background.
- Major challenge is to reduce the combinatorials, and improve S/B.
- UrQMD and PHSD are employed for the simulations: Results with PLUTO is being studied.

Ongoing studies

- Optimization of track and eID selection cuts:
 - more differential DCA parameterizations
 - better control over the track-to-TOF matching
 - better treatment of eID in the TPC, TOF and ECAL
- Special efforts are in progress to reduce the CB from gamma conversion and $\pi^0-\eta$ Dalitz decays.
 - rejection of conversions: DCA cut
 - rejection of Dalitz decay track candidates:
 - Tracks belonging to fully reconstructed π⁰ Dalitz are tagged and not used for further pairing.
 - Divide the acceptance into the fiducial and veto area for better recognition of Dalitz pairs.
- Criteria:
 - larger statistical significance of signals => smaller statistical uncertainties
 - higher S/B ratio => smaller systematic uncertainties from background normalization
 - Signals:
 - Low Mass region -> $0.2-0.6 \text{ GeV/c}^2$
 - LVM: φ, ρ, ω

Rejection of single conversion electron

- DCA selection of 2 or 3σ is very effective in reducing contributions from single conversion track in TPC vessels.
- Not so much at the beam pipe: source of combinatorials.

Rejection of e⁺e⁻ pairs from conversions

• Smilarly, it is very effective in reducing contributions from conversion pairs in TPC vessels.

• Not so much at the beam pipe: source of combinatorials.

- Perform analysis in fiducial acceptance (say $|\eta| < 0.3$) and other is veto (0.3 < η < 1.0).
- With some analysis strategies, further rejection of combinatorials can be achieved.

Current status

- Optimization of selection cuts could lead to some improvements.
 - Signal to Background ratio of 5-10% between 0.2 to 1.5 GeV/c² invariant mass region.

• Continuous dedicated efforts are being put to improve S/B ratio while preserving signal significance.

- Dielectrons are valuable probes and capable of delivering strong physics messages: Exciting di-electron program is anticipated at MPD using dedicated sub-detectors.
- 2. Excellent PID and high purity can be achieved using ECal in addition to TPC+TOF.
- 3. Various event generators are being utilized to simulate event with di-electrons sources.
- 4. Good control over CB from conversions using DCA selection except at beam pipe: ongoing efforts to reduce combinatorial background.

Thank you

BACK-UP

MPD Front Cross-section

MPD Cross-section

TPC Cross-section

TPC Cross-section

30

Pseudorapidity coverage

TOF β distribution

Selected tracks 1. hits > 39 2. $|\eta| < 1$ 3. $|DCA_x,y,z| < 3$ 4. 2σ matching to TOF

