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Motivation: The QCD Phase diagram

Precise determination of the QCD transition
temperature T, = 156.5 £ 1.5 MeV

The chiral crossover line with respect to up

2 4
B, IB B, IB
Too(1B) = Ty, (1 T <T_0> i (T_") )
pc pc

k2 =0.012(4), k27 =0.00(4)

The chiral phase transition temperature and
pseudo-critical line T. = 13275 MeV

Expected bounds on the QCD critical end-point
T.ep < T, = 13272 MeV
pg" 23 Te

Y
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Universal behaviour

Universal critical behaviour guides our thinking on the QCD phase diagram.
Often considered in the vicinity of the chiral critical point.

p—

i = yps MZ(V, T i) = —hB7/P fp(2) — fo(V, T, i)

~ Universal scaling
function

Effective model O(4)/0(2)/2(2): . qcDtothe  (2+1)-flavor QCD:
a

(© 3 relevant scaling fields ) effective model " T_ T ’ 2\
— 4Lc B
t reduced temperature 4—} t = to {( T ) + Ky (T)
h  reduced symmetry controlled by non-
breaking field i - 1 m
eaking fie universal parameter: h=—(H-H,, H=
L~ " inverse system size to, ho, lo ho ms
T.,H., k5 | =1loL 1
. J \ _J
Ky
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Universal behaviour

Universal critical behaviour guides our thinking on the QCD phase diagram.
Often considered in the vicinity of the chiral critical point.

p 1 - —a 7
B = M Z(V,T, i) = —hC/E i (2) — £ (VLT )

~ Universal scaling
function

We can calculate derivatives of In Z. Singular behaviour is characteristic to the
universality class. E.g. here: O(4)

- — N Magnetic Mixed Thermal
O(4)-critical 921n 7 921n Z 0%1n 7
exponents: o2 5h B 512

h h Ot t
o= —0.21 m, 1/6—1 my (B—1)/36 my —a /B8
IB = —0.38 ~ Mg ~ ms - ms
5 p— 4.82 my —0.79 my —0.34 my +0.11
x ] ) A ) ~ (o)
Divergence: strong moderate
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Pseudocritical Temperature

The order parameter: RG invariant combination of light and strange chiral condensate

L M=2(m (), —m (b)) /1

OH with (), = ((P), + (i) ,) /2
= use fx = 156.1(9)/v/2 MeV

The susceptibility: RG-invariant chiral susceptibility

92 f XM = Ms(Omy, + Omg) M |, —my,

O H? =ms (msxi — 2 (P9), — 4muXeu) / fx
with Xrg = Om, (¥¥),

and Xl — 2 (qu + Xud)

XM ™~

Scaling functions and scaling variables: Ciritical point at (2, 2z) = (0, 0)

M = h'? fo(z,21) + foun(T, H, L) 2= t/h'/P°
) - 2i) = lo/(Lh*/P°)
xnr = hg 'hY° 7 f (2, 20) + fou (T, H, L) !
Known from the J k Contains corrections to Two scaling
universality class scaling and regular terms ' variables
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Pseudocritical Temperature

of o2 f
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8 = é | . — ]
! 6 ) 50 L
ol T [Mevp ol TN
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170 L .
7.(0) MoV ] Transition is a crossover, various
I > 1 . agw
| X definitions of 1 . do not need to agree
165 | § Cx o pc
| . . Cy = Study 5 different definitions and
160 | ) i . Cy perform continuum limit
. : & C%( el
155 ;- ; % (156.5 + 1.5) MeV m Find good agreement in the
| | continuum limit:
» 1/N? | —
150 | | l | / T | TpC _— 156.5 (1.5) MeV
L LT S S
\\OO \\\/@\\\/9 \\CP \\6’
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Critical Temperature (chiral limit)

25 y - . - ' T ' r '
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Critical Temperature

160
155
150
AT = 25 MeV
145
140 z & -
s -
135 p— s
R e eV U A A
130 -
H=mj/mg
195 | | | -
0 0.01 0.02 0.04
Chiral extrapolations: Physical masses:
T° = 13275 MeV T,.156.5 (1.5) MeV
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Pseudocritical Temperature at nonzero jp

Consider a ug-dependent shift of the peak of the
susceptiblities. Defining conditions are thus

82M(T9 :UJB)
oT?

Oxm (T, uB)
oT

— (0 or
HB

=0
HB

The condition lead to equations for k,, K,

2 4
B,f [ B B,f | B
Too(1p) = T, (1 T <T0> e <T0> )
pc pc

k2 =0.012(4), w27 =0.00(4)

Universal scaling relates derivatives of M

t:;KT;CTc)JFKZB (“113)2 -

T20*M/0up Karsch et al,
2T&M/OT arXiv:1009.5211
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Pseudocritical Temperature at nonzero jp
Universal scaling relates derivatives of M

1 |/T—-T. pe\’
t = — 5=
tO |:< Tc )_I_K?(T)

0* 0,

O(nup/T)?>  OT

T282M/8;LB
Ko ~
2 2TOM/8T

1.4 ' 0.021 | | | | | [
k=0.0147 0.020 |- neetizr
12T ' 0.019
1 0.018 |
0.017 I
08 | oote |-
-0.5 d°M/d(ug/T)° M '
o TdM/dT I ool
K 0.013
04 | 0.012 [~
T MeV] 0.011
0.2 ' 0.010
130 140 150 160 170 180 130 135 140 145 150 155 160 165 170

Curvature of the pseudo critical line depends only mildly on H
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Freeze-out line

2 4
B, HB B, HrB
Tpo(pB) = T, (1 — kg (T_f’) — k! <—0> )
pc pc

175
170
165 |
160
155
150 | + :
145 - ng =0, %3 =04 +’_
10T ip [MeV] ]

135 ’ | \ 1 \ | L \ | |
0 50 100 150 200 250 300 350 400

T,.158.0 (0.6) MeV -
ko = 0.0153(18)

k4 = 0.00032(67)

'_T(_" [.\-'I'eV]' " crossover line: (’)('/1};)
freeze-out: STAR

constant: €
+ :
ALICE = -

e o - A. Andronic et al., Nature
561 (2018) 321

-

D E
B
. STAR: arXiv:1701.07065

T,.156.5 (1.5) MeV
ke = 0.012(4)
KRgq = 0.00(4)
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The Taylor expansion method

Compute expansion coefficients of the pressure

ﬂ_an_i 1xBQS<”_Bi“_Qj@k
T4 T3V A gl TR0 T T T

Gavai, Gupta (2001)
Bielefeld-Swansea (2002)

Cumulants of conserved charge fluctuations, can also be measured
as event-by-event fluctuations in heavy ion collisions

BQS 6Z 6'7 Bk ln Z
IR0 8(pB/T) 8(uq/T) d(ns/T) T3V

= A comparison with experimental data constrain freeze-out
parameter

Net baryon number fluctuations diverge at the critical point

= Search for the critical point
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Cumulant ratios of conserved charge fluctuations

Combine quark number fluctuations (X;:% ) to obtain hadronic fluctuations (Xf;;?s)

Determine strangeness (1s/T) and electric charge chemical (ug /T) potentials by
iImposing strangeness neutrality ng = 0 and ng/np = 0.4 (order by order in the
expansion).

From the pressure expansion we readily obtain the expansions for the nth-order
cumulants:

kmax

Xf(Ta pB) = Z Xf’k(T)ﬂ%, with fip = pug/T
k=0

Define ratios to eliminate the leading order volume dependence

kmax = >
Xn(Typus) 2o XD R (T
xEB (T, mug)  Slme BTl

B __
an_

In terms of the shape parameters of the distribution we find
R12 = M/O'2, R31 = SO’S/M, R32 = SO’, R42 = K,O'z, oo

Eventually we want calculate observables along the crossover (and freeze-out) line, we
thus need spline interpolations of our data at discrete temperature values.
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The expansion coefficients of the pressure
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Results: The net baryon-number density sz

1-2 I I I I |
R1BQ(T:HB)

Cut-off effects are negligible for
re/T <1 and of the same order as

the statistical error at N = 12 for
pe/T < 1.2

0.8  N<=12 (transparent)
8 (solid)
T=157 MeV

0.6 [ -
LO: [1,0]
NLO: [3,2]

0.4 NNLO: [5,4] -
N3LO: [7,6]

0.2 -

up/T
O ] ] ] ] ]
0 0.2 0.4 0.6 0.8 1 1.2 1.4
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Results: The net baryon-number density sz

1 I I I I I |

RE,(T,ug) Cut-off effects are negligible for

0.8 I - ps/T < 1 and of the same order as
the statistical error at N, = 12 for

0.6 |- | [J,B/TS]_.Z

T=152 MeV
04k 122 mzx ] Temperature dependence is very mild.
161 MeV The curvature of the freeze-out line

0o | ] varies the temperature by less than 3

MeV.
| | | | Me/T
° 0 0.2 0.4 0.6 0.8 1 1.2
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Results: The net baryon-number density R’f2

R2,(Tpc » M) Cut-off effects are negligible for
0.8 | 3 ps/T <1 and of the same order as
the statistical error at N = 12 for
0.6 ] [,LB/TS]_.Z
0.4 QCD _ Temperature dependence is very mild.
HRG The curvature of the freeze-out line
0.2 ] varies the temperature by less than 3
MeV.
0 ' ' ba eV Continuum extrapolation along the
0 50 100 150 200

freeze-out line: good agreement with
HRG (PDG+QM) up to ps < 120 MeV
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Results: Skewness and kurtosis

Skewness and kurtosis ratios RZ, and RL, on (N, = 8)-lattices

1 I I I I 1 I I
0.9 | T=152 MeV 1 0.9
0.8 = vIEV 4 0.8
0.7 I 1=158 MeV 0.7
§L=161 MeV
0.6 | e ——— 0.6
0.5 | N=8 0.5
LO: [1,1] LO: [0,0]
04 1 04
NLO: [3,3] NLO: [2,2]
0.3 L NNLO: [5,5] 1 03k NNLO: [4,4]
up/T ug/T
02 | | | | 02 | | | |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Convergence gets worth with increasing order of the cumulant and with decreasing
temperature.

NLO and NNLO corrections are negative.
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Results: Skewness and kurtosis

Continuum estimates of RZ and RZ, as function of g /T for various temperatures.

1

T

T

T

R34 (T 1g)
09f o |
0.8 r _
0.7 ¢ _
0.6 \
0.5 - \ 0.5
04 cont. estimate, T=155 MeV |
' 158 MeV
0.3 i
us/T
0.2 ' ' l !
0 0.2 0.4 0.6 0.8

1

1

0.9

0.8

0.7

0.2

T

T

| cont. estimate, T=155 MeV
158 MeV

| |

T

T

0 0.2 0.4

Ratios drop with increasing ug /T and with increasing temperature.

0.6

0.8
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Results: Skewness and kurtosis

sl/2 [GeV]: 200 62.4 54.4 39 27
I I I I I

B dashed lines:
1L an(TpC) joint fit to i

STAR data for

LO, T=150 MeV RE,, RE,
0.8 [ 7
[—

G
0.6 - [I]' ~

-

y
NNLO, R5:(Tpe) S .
0.4 - RE’Z(Tpc) -
STAR 2020: Rg1 g
02 | Ri. W |
; STAR Ipreliminellry: openI symbolsl, | R??(Tpc) |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Continuum estimates of Rz
and R, as function of RE, on
the crossover line.

Star data at /sy~ = 54.4 GeV
favors a freeze-out temperature
slightly below the crossover.

The estimate of the freeze-out
temperature T; = 165 MeV for

VSNN = 200 GeV (from a

statistical model analysis) is not
consistent with a determination
of It from the skewness and
kurtosis data by STAR.
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Results: Fifth and sixth order cumulant ratios rRZ and R},

R, and RS, on (N, = 8)-lattices

0-5 I I I I I I I 1 I I I I I I I

B
R§1 (T,up) o5 Rga(T:HB) |
ol Nr=8: T=(155-158) MeV i N=8: T=(155-158) MeV

LO: [1,1]

Ll NLO: [3,3] 1 2r NLO: [2,2]

LO: [0,0]

ug/T up/T
_2 | | | | | | | _3 | | | | | | |

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Large statistical uncertainties

NLO corrections are negative
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What about the critical point?

STAR, arXiv:2001.02852
T T T T T ' STAR: indication for non-monotonic

5 - —
| i . . P
777777777 : bghawour in }_24_12 for 8]1\{]2\, < 27 GeV
I (111 UrQMD 0-5% ] with 3.0 significance [2001.02852].
4 — -80% - . ” .
- Bl UrQMD 70-80% - = Hint at the critical point?
.11 HRG 0-5%
v [ 9 - .- HRG 70-80% i
S 3l - Lattice: would need a reliable10th-
S order calculation to see non-
o Jf monotonic behavior in RZ,.
Q. < _ : B
r = Look for a divergence of Xz, a
Z I _ zero of RY,
1 )™ : A — ?
: . RE,(T;vig) /\
B 0.8 .
o | ‘
5 10 20 50 100 200 Telbe e
0.4 158 MeV = | v
Collision Energy \/SNN (GeV) 161 MeV
0.2 r
| | | IuB/T | _I_’
0 0 0.2 0.4 0.6 0.8 1 1.2 3

= Need smaller temperatures

= Look for poles of xz in the
complex plane
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Resumming the Taylor series: single point Padeé

Perform analytic continuation by a multi-point Padé

L i"’: a; T*
f(x) = Z c;t' =~ R™(x) = Ifm(a:) — Prr (2) — ":zon
i=0 Qn(z) 1+@Qn(z) 4 + > bjxI
j=1

No surprise: rational functions can go beyond the radius of convergence, can be used
to identify cuts.

Im[y]

200 74V—7T1T— T e
— Padé approx [10/10]

2. 51 || 5F

1.5+ -- Exact function : |
L H+6.

-- O(40) Taylor Series

I Op—o o 9o o o o o000 Re[y]
0.5/
0.0}

_ ) } " Rely] _s5} :
[ ( : 1 & Zeroes of Padé
r | e Poles of Padé

_0'57 . L L L
-1 0 1 2 3 4 -4 -2 0 2 4

1.0}

Problem: need a large number of Taylor expansion coefficients to high precision
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Analytic continuation via multi-point Padé

We can consider multiple Lattice QCD results at purely imaginary chemical potential

r; = ipL /T
P (x5) — f(2)Qn(xi) = f(x;)
quz(wi) — 1 (2)Qn(x;) — f(wi)Q;q,(wi) = f'(x;) V1

Possible Method: solve a linear system

Example where the multi-point Padé works well: 1D-Thirring

2.0

— [15/15]Single Pade about 0 Im[y] Im[y]

- [10/
1.5(
- Exact

1.0t /___.. ________

0.5f

ade in range [0,4]

] ]
0 = . Re[]
u ]

0.0 Re[y]

[15,15] Single Pade about 0

= Analytic Poles =51 u m Analytic Poles [

[10,10] MultiPad
(6]

‘0‘50 1 2 3 4 o Poles of Pade o Poles of Pade

Comparison b/w Multi and Single point Padé —‘4 —‘2 0 2 4 6 8 —‘4 —‘2 0 2 4 6 8

Figure: Left: multi-point vs single Padé approximating the function. (Middle) :
Reconstruction of the analytic poles by the multi-point Padé and Bottom (Right) :
and by the single point Padé

[FAR,KZ,SS, Phys. Rev. D 103, 034513] and [FdR,KZ : arXiv:2109.02511]
S. Singh (Bi-Parma Collaboration), MIT-Lattice colloquium, Oct. 7, 2021
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Calculations at imaginary chemical potential

The fermion determinant stays real at imaginary chemical potential, the imaginary
chemical potential is implemented as phases to the time linke link variables

Uop(z) — e Uy(x) Ug () — e A1 Ug (x)
Results can be analytically continued to real chemical potential
Taylorin Im[ug] —  Taylorin Re[ug]
[Borsanyi et al, JHEP 10 (2018) 205]

The QCD partition function is periodic in Im[ug] due to the Roberge-Weiss (RW)
symmetry, with a periodicity 2= T

>

Im[up] w — w
3nl'+ IT l
T ~ 7 T T T
>
L Re[pB] o o
| ()
— 3T+ [Bonati et al, Phys. Rev. D 99, 014502 (2019)]
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Calculations at imaginary chemical potential

Use again (2+1) flavour of HISQ fermions at physical masses. Lattice is still course:
N, = 4,6. For simplicity we chose p, = p; = pip/3

—— T=201 MeV 0.0
0.4 - -} T=186.26 MeV '
-4- T=176 MeV 05 -
0o —}- T=167.38 MeV
—_ — -1.0
= Y ]
- 0.0 ~ —1.51
Q @
> v —2.0-
02 < 72097 34— T=201 Mev
_55 ]~ T=186.26 MeV
04 -4- T=176 MeV
-3.04 —}- T=167.38 MeV |
-} - T=160 MeV
~3.5 -
0 1 2 4 5 6

Expected symmetries are observed
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Free energy and analytic continuation

> 3 T T T
s 1r Re Rat aprox S T=167MeV
o 05L L aeeeereeeeean — % — Re Rat aprox NS T=167MeV
'ﬁ' .................. 25 Re Rat aprox S T=186MeV
= Qleessseeen®’ o Tt — % — Re Rat aprox NS T=186MeV
0 1 2 3 4 5 6 Re Rat aprox S TRW
Im[p,/T] 2 - |=— % — Re Rat aprox NS TRW
o ) - Im NS 167MeV
= T T T T T — | | mm——— Im NS 186MeV
s 1t Im NS TRW
o | et e ——Im Symall T
@Ost et e
}ﬂ Oleennseeenst®” o e
0 1 2 3 4 5 6
Im[ e /T]
> Free energy obtained from the rational functions
= 4L | | .. | '
% 0.5F ettt e
E O ............. o e
=0 1 2 3 4 5 6
Im[ e /T]
Free energy develops a non- Analytic continuation of the baryon
analyticity close to the Roberge- number density. Without enforcing
Weiss transition symmetries, the imaginary part

states zero for pg/T < 2
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Lee-Yang Edge Singularities

From Lee-Yang (1952) and Fisher (1978) we know How zeros of the partition functions
(poles of susceptibilities) are expected to behave in the vicinity of a critical point.
The can be found at a universal value of the scaling variable z = z.. They indicate the

edge of a branch cat in the universal scaling functions.
The universal value as recently been determined from RG-study, in particular for Z(2),
O(2) and O(4)

3.9
Consider universal critical i S £ S S
behaviour in the vicinity of the
Roberge-Weiss (RW), the chiral 207
transition or even in the vicinity of & 2.0 oL N
the QCD critical end-point. §1‘5_ AR SN

1.0 1 \‘\ \\\\ \3\; ~~~~~~~
Data points indicate our N T
preliminary results on the Lee- 051
Yang Edge singularities 0.0 . . N NG

0 1 2 3 4 5
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Scaling analysis

RW-transition Z(2)

Re[up /T] ~ Tm[h]

4 LYE:N, =4

scaling-fit

0.0

0.1 0.2

(T — Taw)/Trw|

Scaling of the LYE is in accordance
with the expected universal behaviour

Re

Im

uB/T)

wr/T)

() ()
= 47 :
KA Trw

= =+,
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Chiral transition O(4)
T = 145 MeV

3.0

2.5 1

2.0 A

1.5~

Im[ug/T]

1.0 A

0.5 A

0.0

Relus/T]

LEY is at "= 145 MeV is in good
agreement with the expected
position determined by the non-
universal parameter previously

found by HotQCD: T, k», 2,




Summary and outlook

Universal critical behaviour is observed in lattice QCD data and guided our
thinking on the QCD phase diagram

Pseudocritical and critical temperatures as well as some non-universal constants
are known to quite some precision.

The calculation for high order cumulants is numerical very challenging

Lattice QCD calculations show a significant increase in precision for cumulant
ratios along the crossover line in the QCD phase diagram for #s/T < 1.2 due to
increase in the statistics and thus also the order of the expansion.

Presented first calculations of R and RZ, along the crossover line.

From preliminary data at imaginary chemical potential we could identify LYE
singularities, wich behave also in accordance with the expected universal
behaviour

Outlook:

>~ Need to increase statistics for ( NV, = 12- and ( N, = 16)-lattices further.

> Investigate resummation schemes to push Taylor expansion results to larger pg/T
> Try to follow LYE to even lower temperature.
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Backup
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The Taylor expansion method

Compute expansion coefficients of the pressure

P _InZ 1 ses(km) (Ko’ &)’“
T4 T3V A gl TR0 T T T

Gavai, Gupta (2001)
Bielefeld-Swansea (2002)

Notation: relevant operators are derivatives of the determinant

0" o' .
Df = ——det [My(uys)]"/* = —ea™nMss) - £ ¢ {u,d, s}
ou’ ou’
I I
up to 4th-order in u: from 6th-order in u onwards:
exponential dependence: linear dependence:
f _ —1p r(1) f _ —1p r(1)
Dl_Tr[Mf Mf] Dl_Tr[Mf Mf‘
f _ —1pas(1)ar—1p (1) f _ —1p7(1)ar—1p (1)
DI = —Tr [Mf MMM } DI = —Tr [Mf MO MM }
—1p r(2)
+Tr | M M all M® =0, for k>1

= much less operators to measure!
Gavai, Sharma 2015
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Lattice setup and statistics

Use (2+1)-flavor of HISQ-fermions, with physical strange and light quark masses.
Lattices sizes are 32° x 8, 48°% x 12, 64° x 16, at 9 different temperature values.

Statistics: Compared to our previous analysis of skewness and kurtosis [HotQCD, PRD
96 (2017) 074510] we increased the statistics on (V. = 8)-lattices by a factor 3-4 and on
(N, = 12)-lattices by a factor 6-8. |.e. we have now

N, ‘ 8 | 12 ‘ 16
#conf. ‘ 1.2 . 106 ‘ (2—-3)- 105‘104

Order of the expansion: \We can now go to N3LO, compared to NLO in our previous
study. l.e., we include 8-th order expansion coefficients of the pressure.

Recent Calculations were performed on
Summit, using Nvidia's V100 GPU'’s.




Results: Fifth and sixth order cumulant ratios rRZ and R},

1/2 .
Shi [GeV]: 200

62.4 54.4

39

27

NLO, RE,(Tpe)
1 Rgg(Tpc)

STAR preliminary: RE, £

i

B 2
R12=IMB/O'B

0.4

0.5

0.6

0.7

0.8

RS and R, on (N, = 8)-lattices

Not consistent with STAR data:
= A. Pandav@SQM19

VSNN = 200 GeV: RE, < 0
VSNN = 54.4 GeV: RL, > 0

= | attice QCD predictions
SNN R5Bl sz

200 | —0.5(3) | —0.7(3)

54.4 | —0.7(4) | —2(1)
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Singularities in the complex plane

Bielefeld-Parma (preliminary)

T — T ® Zeros of the numerator

33 — +RW ¢ Zeros of the denominator
s
E W , .
3.3.1 ¢ ¢
HE 3.0

2.9

—-0.6 -0.4 —-0.2 0.0 0.2 0.4 0.6

Re[pp /T
6 o ® Zeros of the numerator
T ~ Tpc ¢ Zeros of the denominator

. ) ¢ o (¢
~
E ouliup
i ¢ ¢

-2
E

4 ¢ . ¢

_6 °

-10 -5 0 5 10
Re[pp /T

Obtain zeros of the numerator and
denominator

Some zeros match to high precision,
for others its not so clear...

The RW-singularity seems to be
stable

Other singularities need further
iInvestigations...work in progress.

Singularities may also be understood
in terms of the Fourier coefficients of
the Im[x?]

'VVovchenko et al, PRD 97, 114030 (2018)]
[Almasi et al, PRD 100, 016016 (2019)]
Almasi et al, PLB 793 (2019)]
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