Exploring the QCD phase diagram with Taylor expansion and analytic continuation

Christian Schmidt

HotQCD Collaboration, Phys.Rev.D 101 (2020) 7, 074502 and work in progress

- A. Bazavov, D. Bollweg, H.-T. Ding, P. Enns, J. Goswami, P. Hegde,
- O. Kaczmarek, F. Karsch, A. Lahiri, R. Larsen, S.-T. Li, Swagato Mukherjee,
- H. Ohno, P. Petreczky, C. Schmidt, S. Sharma, P. Steinbrecher

Bielefeld-Parma Collaboration, arXiv: 2101.02254 and work in Progress

P. Dimopoulos, F. Di Renzo, J. Goswami, G. Nicotra, C. Schmidt, S. Singh,K. Zambello, F. Ziesché

Exploring High- μ_B Probes with rare Probes, ECT*, Oct 11-15, 2021

Christian Schmidt

Precise determination of the QCD transition temperature $T_{
m pc} = 156.5 \pm 1.5 \; {
m MeV}$

HotQCD: PLB 795 (2019) 15

Christian Schmidt

Precise determination of the QCD transition temperature $T_{
m pc} = 156.5 \pm 1.5 \; {
m MeV}$

HotQCD: PLB 795 (2019) 15

The chiral crossover line with respect to μ_B $T_{\rm pc}(\mu_B) = T_{\rm pc}^0 \left(1 - \kappa_2^{B,f} \left(\frac{\mu_B}{T_{\rm pc}^0} \right)^2 - \kappa_4^{B,f} \left(\frac{\mu_B}{T_{\rm pc}^0} \right)^4 \right)$ $\kappa_2^{B,f} = 0.012(4), \quad \kappa_4^{B,f} = 0.00(4)$

HotQCD: PLB 795 (2019) 15

The chiral phase transition temperature and pseudo-critical line $T_{\rm c} = 132^{+3}_{-6}~{
m MeV}$

HotQCD: PRL 123 (2019) 062002

Precise determination of the QCD transition temperature $T_{
m pc} = 156.5 \pm 1.5 \; {
m MeV}$

HotQCD: PLB 795 (2019) 15

The chiral crossover line with respect to μ_B $T_{\rm pc}(\mu_B) = T_{\rm pc}^0 \left(1 - \kappa_2^{B,f} \left(\frac{\mu_B}{T_{\rm pc}^0} \right)^2 - \kappa_4^{B,f} \left(\frac{\mu_B}{T_{\rm pc}^0} \right)^4 \right)$ $\kappa_2^{B,f} = 0.012(4), \quad \kappa_4^{B,f} = 0.00(4)$

HotQCD: PLB 795 (2019) 15

The chiral phase transition temperature and pseudo-critical line $T_{\rm c} = 132^{+3}_{-6} {
m MeV}$

HotQCD: PRL 123 (2019) 062002

Expected bounds on the QCD critical end-point

$$T_{
m cep} < T_{
m c} = 132^{+3}_{-6} \; {
m MeV}$$
 $\mu_B^{
m cep} \gtrsim 3 \; T_c$

Universal behaviour

Universal critical behaviour guides our thinking on the QCD phase diagram.
 Often considered in the vicinity of the chiral critical point.

$$\frac{p}{T^4} = \frac{1}{VT^3} \ln Z(V, T, \vec{\mu}) = -h^{(2-\alpha)/\beta\delta} \frac{f_f(z)}{f_f(z)} - f_r(V, T, \vec{\mu})$$
Universal scaling function

Effective model O(4)/O(2)/Z(2):

- 3 relevant scaling fields
 - t reduced temperature
 - *h* reduced symmetry breaking field
 - L^{-1} inverse system size

map QCD to the effective model

controlled by nonuniversal parameter: t_0, h_0, l_0 T_c, H_c, κ_2^B

(2+1)-flavor QCD:

$$egin{aligned} egin{aligned} t &= rac{1}{t_0} \left[\left(rac{T-T_c}{T_c}
ight) + \kappa_2^B \left(rac{\mu_B}{T}
ight)^2
ight] \ h &= rac{1}{h_0} (H-H_c), \quad H = rac{m_l}{m_s} \ l &= l_0 L^{-1} \end{aligned}$$

Universal behaviour

Universal critical behaviour guides our thinking on the QCD phase diagram.
 Often considered in the vicinity of the chiral critical point.

$$\frac{p}{T^4} = \frac{1}{VT^3} \ln Z(V, T, \vec{\mu}) = -h^{(2-\alpha)/\beta\delta} \frac{f_f(z)}{f_f(z)} - f_r(V, T, \vec{\mu})$$
Universal scaling function

We can calculate derivatives of In Z. Singular behaviour is characteristic to the universality class. E.g. here: O(4)

	Magnetic	Mixed	Thermal
O(4)-critical exponents:	$\frac{\partial^2 \ln Z}{\partial d}$	$\partial^2 \ln Z$	$\partial^2 \ln Z$
$\alpha = 0.21$	∂h^2	$\partial h \; \partial t$	∂t^2
lpha=-0.21 eta=-0.38 $\delta=4.82$	$\sim \left(rac{m_l}{m_s} ight)^{1/\delta-1} \ \sim \left(rac{m_l}{m_s} ight)^{-0.79}$	$\sim \left(rac{m_l}{m_s} ight)^{(eta-1)/eta\delta} \ \sim \left(rac{m_l}{m_s} ight)^{-0.34}$	$\sim \left(rac{m_l}{m_s} ight)^{-lpha/eta\delta} \ \sim \left(rac{m_l}{m_s} ight)^{+0.11}$
Dive	rgence: strong	moderate	none
Christian Sch	midt EXPLORING H	IGH-MUR MATTER WITH	

Pseudocritical Temperature

• The order parameter: RG invariant combination of light and strange chiral condensate

$$M \sim rac{\partial f}{\partial H}$$
 $M = 2 \left(m_s \left\langle ar{\psi} \psi \right\rangle_l - m_l \left\langle ar{\psi} \psi \right\rangle_s
ight) / f_K^4$
with $\left\langle ar{\psi} \psi \right\rangle_l = \left(\left\langle ar{\psi} \psi \right\rangle_u + \left\langle ar{\psi} \psi \right\rangle_d
ight) / 2$
 \Rightarrow use $f_K = 156.1(9) / \sqrt{2}$ MeV

The susceptibility: RG-invariant chiral susceptibility

Pseudocritical Temperature

- Transition is a crossover, various definitions of T_{pc} do not need to agree
- Study 5 different definitions and perform continuum limit
- Find good agreement in the continuum limit:

$$T_{pc} = 156.5 \ (1.5) \ {\rm MeV}$$

A. Bazavov et al [HotQCD], Phys. Lett. B795, 15 (2019), arXiv:1812.08235

Critical Temperature (chiral limit)

Christian Schmidt

Critical Temperature

Christian Schmidt

Pseudocritical Temperature at nonzero μ_B

Consider a μ_B -dependent shift of the peak of the susceptiblities. Defining conditions are thus

$$\left. \frac{\partial^2 M(T,\mu_B)}{\partial T^2} \right|_{\mu_B} = 0 \quad \text{ or } \left. \left. \frac{\partial \chi_M(T,\mu_B)}{\partial T} \right|_{\mu_B} = 0 \right.$$

The condition lead to equations for κ_2, κ_4

$$egin{split} T_{
m pc}(\mu_B) &= T_{
m pc}^0 \left(1 - \kappa_2^{B,f} \left(rac{\mu_B}{T_{
m pc}^0}
ight)^2 - \kappa_4^{B,f} \left(rac{\mu_B}{T_{
m pc}^0}
ight)^4
ight) \ \kappa_2^{B,f} &= 0.012(4), \quad \kappa_4^{B,f} = 0.00(4) \end{split}$$

Universal scaling relates derivatives of M

$$t = \frac{1}{t_0} \left[\left(\frac{T - T_c}{T_c} \right) + \kappa_2^B \left(\frac{\mu_B}{T} \right)^2 \right] \longleftrightarrow \frac{\partial^2}{\partial (\mu_B/T)^2} \simeq \frac{\partial}{\partial T}$$
$$\kappa_2 \sim \frac{T^2 \partial^2 M / \partial \mu_B}{2T \partial M / \partial T} \qquad \text{Karsch et al,}$$
$$arXiv:1009.5211$$

Pseudocritical Temperature at nonzero μ_B

Universal scaling relates derivatives of M

Curvature of the pseudo critical line depends only mildly on H

Christian Schmidt

Freeze-out line

 $\kappa_4 = 0.00(4)$

B795, 15 (2019), arXiv:1812.08235 $\kappa_4 = 0.00032(67)$

S. Borsanyi et al, arXiv: 2002.02821

The Taylor expansion method

Compute expansion coefficients of the pressure

$$\frac{p}{T^4} = \frac{\ln Z}{T^3 V} = \sum_{i,j,k=0}^{\infty} \frac{1}{i!j!k!} \chi_{ijk,0}^{BQS} \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k$$

Gavai, Gupta (2001)
Bielefeld-Swansea (2002)

Cumulants of conserved charge fluctuations, can also be measured as event-by-event fluctuations in heavy ion collisions

$$\chi^{BQS}_{ijk,0} = \frac{\partial^i}{\partial(\mu_B/T)} \frac{\partial^j}{\partial(\mu_Q/T)} \frac{\partial^k}{\partial(\mu_S/T)} \frac{\ln Z}{T^3 V}$$

⇒ A comparison with experimental data constrain freeze-out parameter

Net baryon number fluctuations diverge at the critical point

$$\Rightarrow$$
 Search for the critical point

Cumulant ratios of conserved charge fluctuations

- Combine quark number fluctuations (χ_{ijk}^{uds}) to obtain hadronic fluctuations (χ_{ijk}^{BQS}) .
- Determine strangeness (μ_S/T) and electric charge chemical (μ_Q/T) potentials by imposing strangeness neutrality $n_S = 0$ and $n_Q/n_B = 0.4$ (order by order in the expansion).
- From the pressure expansion we readily obtain the expansions for the nth-order cumulants: $R = \frac{k_{\text{max}}}{\sum} R h = \frac{k_{\text{max}}}{\sum} R h$

$$\chi_n^B(T,\mu_B) = \sum_{k=0}^{max} \tilde{\chi}_n^{B,k}(T)\hat{\mu}_B^k, \text{ with } \hat{\mu}_B = \mu_B/T$$

Define ratios to eliminate the leading order volume dependence

$$R^B_{nm} = rac{\chi^B_n(T,\mu_B)}{\chi^B_m(T,mu_B)} = rac{\sum_{k=0}^{k_{ ext{max}}} ilde{\chi}^{B,k}_n(T) \hat{\mu}^k_B}{\sum_{l=0}^{l_{ ext{max}}} ilde{\chi}^{B,l}_m(T) \hat{\mu}^l_B}$$

In terms of the shape parameters of the distribution we find

$$R_{12} = M/\sigma^2, \; R_{31} = S\sigma^3/M, \; R_{32} = S\sigma, \; R_{42} = \kappa\sigma^2, \; \ldots$$

Eventually we want calculate observables along the crossover (and freeze-out) line, we thus need spline interpolations of our data at discrete temperature values.

The expansion coefficients of the pressure

Christian Schmidt

EXPLORING HIGH-MUB MATTER WITH RARE PROBES

18

• Cut-off effects are negligible for $\mu_B/T \leq 1$ and of the same order as the statistical error at $N_{ au} = 12$ for $\mu_B/T \leq 1.2$.

Christian Schmidt

- Cut-off effects are negligible for $\mu_B/T \leq 1$ and of the same order as the statistical error at $N_{\tau} = 12$ for $\mu_B/T \leq 1.2$.
- Temperature dependence is very mild. The curvature of the freeze-out line varies the temperature by less than 3 MeV.

- Cut-off effects are negligible for $\mu_B/T \le 1$ and of the same order as the statistical error at $N_{ au} = 12$ for $\mu_B/T \le 1.2$.
- Temperature dependence is very mild. The curvature of the freeze-out line varies the temperature by less than 3 MeV.
- Continuum extrapolation along the freeze-out line: good agreement with HRG (PDG+QM) up to $\mu_B \leq 120~{
 m MeV}$

Results: Skewness and kurtosis

- Convergence gets worth with increasing order of the cumulant and with decreasing temperature.
- NLO and NNLO corrections are negative.

Results: Skewness and kurtosis

• Continuum estimates of R_{31}^B and R_{42}^B as function of μ_B/T for various temperatures.

Ratios drop with increasing μ_B/T and with increasing temperature.

Results: Skewness and kurtosis

- Continuum estimates of R_{31}^B and R_{42}^B as function of R_{12}^B on the crossover line.
- Star data at $\sqrt{s_{NN}} = 54.4 \text{ GeV}$ favors a freeze-out temperature slightly below the crossover.
- The estimate of the freeze-out temperature $T_{\rm f} = 165$ MeV for $\sqrt{s_{NN}} = 200$ GeV (from a statistical model analysis) is not consistent with a determination of $T_{\rm f}$ from the skewness and kurtosis data by STAR.

Christian Schmidt

Results: Fifth and sixth order cumulant ratios R_{51}^B and R_{62}^B

• R^B_{51} and R^B_{62} on $(N_{ au}=8)$ -lattices

- Large statistical uncertainties
- NLO corrections are negative

EXPLORING HIGH-MUB MATTER WITH RARE PROBES

25

What about the critical point?

- STAR: indication for non-monotonic behaviour in R^P₄₂ for s^{1/2}_{NN} < 27 GeV with 3.0σ significance [2001.02852].
 ⇒ Hint at the critical point?
- Lattice: would need a reliable $10^{\text{th-}}$ order calculation to see nonmonotonic behavior in R_{42}^B .
 - ⇒ Look for a divergence of χ_2^B , a zero of R_{12}^B

⇒ Look for poles of χ_2^B in the complex plane

Christian Schmidt

EXPLORING HIGH-MUB MATTER WITH RARE PROBES

26

Perform analytic continuation by a multi-point Padé

$$f(x) = \sum_{i=0}^{L} c_i x^i \approx R_n^m(x) = \frac{P_m(x)}{\tilde{Q}_n(x)} = \frac{P_m(x)}{1 + Q_n(x)} = \frac{\sum_{i=0}^{m} a_i x^i}{1 + \sum_{j=1}^{n} b_j x^j}$$

No surprise: rational functions can go beyond the radius of convergence, can be used to identify cuts.

Problem: need a large number of Taylor expansion coefficients to high precision

Christian Schmidt

EXPLORING HIGH-MUB MATTER WITH RARE PROBES

m

Analytic continuation via multi-point Padé

We can consider multiple Lattice QCD results at purely imaginary chemical potential

Possible Method: solve a linear system

Example where the multi-point Padé works well: 1D-Thirring

Figure: Left: multi-point vs single Padé approximating the function. (Middle) : Reconstruction of the analytic poles by the multi-point Padé and Bottom (Right) : and by the single point Padé

[FdR,KZ,SS, Phys. Rev. D 103, 034513] and [FdR,KZ : arXiv:2109.02511]

S. Singh (Bi-Parma Collaboration), MIT-Lattice colloquium, Oct. 7, 2021

Christian Schmidt

Calculations at imaginary chemical potential

 The fermion determinant stays real at imaginary chemical potential, the imaginary chemical potential is implemented as phases to the time linke link variables

 $U_0(x)
ightarrow e^{i\hat{\mu}_I} U_0(x) \qquad U_0^\dagger(x)
ightarrow e^{-i\hat{\mu}_I} U_0^\dagger(x)$

Results can be analytically continued to real chemical potential

Taylor in $Im[\mu_B] \rightarrow Taylor$ in $Re[\mu_B]$

[Borsanyi et al, JHEP 10 (2018) 205]

• The QCD partition function is periodic in $Im[\mu_B]$ due to the Roberge-Weiss (RW) symmetry, with a periodicity $2\pi T$

Christian Christian Schmidt RING H Criticality in QCD and the HRG PROBES

Calculations at imaginary chemical potential

• Use again (2+1) flavour of HISQ fermions at physical masses. Lattice is still course: $N_{\tau} = 4.6$. For simplicity we chose $\mu_q = \mu_s = \mu_B/3$

Expected symmetries are observed

Christian Schmidt

EXPLORING HIGH-MUB MATTER WITH RARE PROBES

30

Free energy and analytic continuation

 Free energy develops a nonanalyticity close to the Roberge-Weiss transition

• Analytic continuation of the baryon number density. Without enforcing symmetries, the imaginary part states zero for $\mu_B/T < 2$

Lee-Yang Edge Singularities

- From Lee-Yang (1952) and Fisher (1978) we know How zeros of the partition functions (poles of susceptibilities) are expected to behave in the vicinity of a critical point.
- The can be found at a universal value of the scaling variable $z = z_c$. They indicate the edge of a branch cat in the universal scaling functions.
- The universal value as recently been determined from RG-study, in particular for Z(2), O(2) and O(4)

A. Connelly, G. Johnson, F. Rennecke, and V. Skokov, Phys. Rev. Lett. 125, 191602 (2020), arXiv:2006.12541 [cond-mat.stat-mech].

- Consider universal critical behaviour in the vicinity of the Roberge-Weiss (RW), the chiral transition or even in the vicinity of the QCD critical end-point.
- Data points indicate our preliminary results on the Lee-Yang Edge singularities

Nicotra et al (Bi-Param Collaboration) Lattice 2021

Christian Schmidt

Scaling analysis

 Scaling of the LYE is in accordance with the expected universal behaviour

$$\operatorname{Re}[\mu_B/T] = \pm \pi \left(\frac{z_0}{|z_c|}\right)^{\beta\delta} \left(\frac{T_{RW} - T}{T_{RW}}\right)^{\beta\delta},$$

 $\operatorname{Im}[\mu_B/T] = \pm \pi \,,$

Chiral transition O(4)

T = 145 MeV

• LEY is at T = 145 MeV is in good agreement with the expected position determined by the nonuniversal parameter previously found by HotQCD: T_c , k_2 , z_0

Summary and outlook

- Universal critical behaviour is observed in lattice QCD data and guided our thinking on the QCD phase diagram
- Pseudocritical and critical temperatures as well as some non-universal constants are known to quite some precision.
- The calculation for high order cumulants is numerical very challenging
- Lattice QCD calculations show a significant increase in precision for cumulant ratios along the crossover line in the QCD phase diagram for $\mu_B/T \leq 1.2$ due to increase in the statistics and thus also the order of the expansion.
- Presented first calculations of R_{51}^B and R_{62}^B along the crossover line.
- From preliminary data at imaginary chemical potential we could identify LYE singularities, wich behave also in accordance with the expected universal behaviour

Outlook:

- Need to increase statistics for ($N_{ au} = 12$)- and ($N_{ au} = 16$)-lattices further.
- Investigate resummation schemes to push Taylor expansion results to larger μ_B/T
- Try to follow LYE to even lower temperature.

Backup

Christian Schmidt

The Taylor expansion method

Compute expansion coefficients of the pressure

$$\frac{p}{T^4} = \frac{\ln Z}{T^3 V} = \sum_{i,j,k=0}^{\infty} \frac{1}{i!j!k!} \chi^{BQS}_{ijk,0} \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k$$

Bielefeld-Swansea (2002)

Notation: relevant operators are derivatives of the determinant

$$D_i^f = rac{\partial^i}{\partial \mu_f^i} \mathrm{det} \left[M_f(\mu_f)
ight]^{1/4} = rac{\partial^i}{\partial \mu_f^i} e^{rac{1}{4} \mathrm{Tr} \ln M_f(\mu_f)}, \quad f \in \{u, d, s\}$$

up to 4^{th} -order in μ :

exponential dependence:

$$\begin{split} D_{1}^{f} &= \mathrm{Tr} \left[M_{f}^{-1} M_{f}^{(1)} \right] \\ D_{2}^{f} &= -\mathrm{Tr} \left[M_{f}^{-1} M_{f}^{(1)} M_{f}^{-1} M_{f}^{(1)} \right] \\ &\quad + \mathrm{Tr} \left[M_{f}^{-1} M_{f}^{(2)} \right] \\ &\quad \vdots \end{split}$$

from 6th-order in μ onwards:

linear dependence:

$$D_{1}^{f} = \operatorname{Tr} \left[M_{f}^{-1} M_{f}^{(1)} \right]$$

$$D_{2}^{f} = -\operatorname{Tr} \left[M_{f}^{-1} M_{f}^{(1)} M_{f}^{-1} M_{f}^{(1)} \right]$$
all $M_{f}^{(k)} = 0$, for k>1
 \rightarrow much less operators to measure!

⇒ much less operators to measure! Gavai, Sharma 2015

EXPLORING HIGH-MUB MATTER WITH RARE PROBES

3

Lattice setup and statistics

- Use (2+1)-flavor of HISQ-fermions, with physical strange and light quark masses.
- Lattices sizes are $32^3 \times 8$, $48^3 \times 12$, $64^3 \times 16$, at 9 different temperature values.
- Statistics: Compared to our previous analysis of skewness and kurtosis [HotQCD, PRD 96 (2017) 074510] we increased the statistics on $(N_{\tau} = 8)$ -lattices by a factor 3-4 and on $(N_{\tau} = 12)$ -lattices by a factor 6-8. I.e. we have now

- Order of the expansion: We can now go to N³LO, compared to NLO in our previous study. I.e., we include 8-th order expansion coefficients of the pressure.
- Recent Calculations were performed on Summit, using Nvidia's V100 GPU's.

- R^B_{51} and R^B_{62} on $(N_{ au}=8)$ -lattices
 - Not consistent with STAR data: A. Pandav@SQM19 $\sqrt{s_{NN}} = 200 \text{ GeV}: R_{62}^P < 0$

 $\sqrt{s_{NN}}=54.4~{
m GeV}$: $R^P_{62}>0$

➡ Lattice QCD predictions

$\sqrt{s_{NN}}$	R^B_{51}	R^B_{62}
200	-0.5(3)	-0.7(3)
54.4	-0.7(4)	-2(1)

38

Christian Schmidt

Bielefeld-Parma (preliminary)

- Obtain zeros of the numerator and denominator
- Some zeros match to high precision, for others its not so clear...
- The RW-singularity seems to be stable
- Other singularities need further investigations...work in progress.
- Singularities may also be understood in terms of the Fourier coefficients of the ${\rm Im}[\chi_1^B]$

[Vovchenko et al, PRD 97, 114030 (2018)]

39

[Almási et al, PRD 100, 016016 (2019)]

[Almási et al, PLB 793 (2019)]