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The phase diagram

What we know... what we would like to
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R. Hagedorn (1964/65) “statistical bootstrap” idea: the exponential growth of states |
iimplies a limiting temperature, T, for hadronic matter.

i Roughly: close to T, putting energy into the system increases the number of particles, not

( the temperature.

One of the caveats: particles were assumed to be point-like objects.

I.Ya. Pomeranchuk (1951) already noted that a crucial feature of hadrons: their size.
A hadron must have its own volume to exist.
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to the existence of a different phase of the vacuum in which quarks
are not confined."”
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The behavior of matter close to the phase transition is characterized by a kind of
“critical opalescence” of hadrons



Important lesson:

Close to T. hadronic resonances play a crucial role

There exists a limiting temperature, T, for hadronic matter. If we insist to describe
hadronic matter in terms of baryons and mesons at increasing temperature, the

description becomes inconsistent.
The critical temperature is of order m,

The pressure of the bootstrap statistical model is in agreement with LQCD
calculation below T,



Important lesson:

Close to T. hadronic resonances play a crucial role

There exists a limiting temperature, T, for hadronic matter. If we insist to describe
hadronic matter in terms of baryons and mesons at increasing temperature, the

description becomes inconsistent.
The critical temperature is of order m,

The pressure of the bootstrap statistical model is in agreement with LQCD
calculation below T,

See Redlich and Satz, e-Print: 1501.07523 [hep-phl

for more on Hagedorn’s work.



Increasing energy density

Density NS part Qs = aig(f) Degrees of freedom
H
light nuclei

He 10-4g cm3 atmosphere

Fe 10 g Cll‘l'5 ) .

Conﬁnlng heavy nuclei
outer crust

neutron 11 3
drip 1011 g cm
Inner crust
neutrons
neutron 1014 g cm-d and protons
proton
core
1 wrong  Cocberpairs of gk
ve arge o :
R ° Coupllng instantons? glueballs?
weak le and of
extreme C oupli ng quarks and gluons
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Various approaches use results from LQCD simulation in effective field theories.



Effective field theory: two perspectives

Schematically, two approaches to matter in extreme conditions

Understanding the (astro)physical phenomena related to high chemical potential
and temperature

Understanding QCD in a region in which the correct degrees of freedom ar
guarks and gluons
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Effective field theory: two perspectives

Schematically, two approaches to matter in extreme conditions

Understanding the (astro)physical phenomena related to high chemical potential
and temperature

Understanding QCD in a region in which the correct degrees of freedom ar
guarks and gluons

The two perspectives are not mutually exclusive.

However, for those who are interested in (astro)physical phenomena, it is enough

to have an effective theory which mimics/reproduces the strong interaction in a
sufficiently accurate way.

Who is interested to understand QCD wants an effective theory that in a well defined
limit is QCD

10
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High temperature: The Early Universe
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is determined by gravity (FLRW
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History of the Universe
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<5 1) The expansion of the Universe
| is determined by gravity (FLRW
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o Scale variation by Friedmann’s equation
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1) The expansion of the Universe
is determined by gravity (FLRW

cosmology)

Scale variation by Friedmann’s equation

a 4G N
- = 3
» 3 (e +3p)

2) The quark epoch about 107 °s
The QGP lasts 1072%s
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1) The expansion of the Universe
is determined by gravity (FLRW
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Scale variation by Friedmann’s equation
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2) The quark epoch about 107 °s
The QGP lasts 1072%s

The Universe is quite homogeneous

AT
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High baryonic density: Compact stars

4 )

quark-hybrid traditional neutron star

star

gmeron neutron %tar wi}h
pion condensate < <
Moy S M S 2Mg
R ~ 10 km
Fe 6
| T <10° K
color—superconducting 6 3 ~
(str(ajnge quirl; matter 10 " g/cm
u,d,s quarks
10 y g/cm 3
2SC
CFL 14 3
CSL CFL—K+ 10 g/Cm
9orL  CrL-KO
LOFF o Hydrogen/He
CFL-7 = at¥nos%here

strange star
nucleon star

R~ 10 km

8 F. Weber, Prog.Part.Nucl.Phys. 54 (2005) 193 )

Possible deconfined phases of matter
Geometrical argument: for central densities p. > pg the distance between nucleons
is smaller than their radius: nucleons overlap, “quark drip”
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High baryonic density: Compact stars

4 )

quark-hybrid traditional neutron star
star

hyperon

stan neutron star with

pion condensate < <
Moy S M S 2Mg
R ~ 10 km
e T <10° K
color—superconducting 6 3 ~
(str(ajnge quirl; matter 10 " g/cm
u,d,s quarks
10 y g/cm 3
2SC
SL CFL 14 3
5 CFL-K* 1014 gem

~<-_ Hydrogen/He
atmosphere

strange star
nucleon star

R~ 10 km

8 F. Weber, Prog.Part.Nucl.Phys. 54 (2005) 193 )

Possible deconfined phases of matter
Geometrical argument: for central densities p. > pg the distance between nucleons
is smaller than their radius: nucleons overlap, “quark drip”

Experimentally access in labs on Earth? Need to produce neutron rich matter.
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Compressing cold matter

Differently from the “lab case”, weak equilibrium in Neutron Stars has all the time to work.
Favored isotopes in the NS crust

Isotope /Z//>1\ pr(g/cm®) | pe (MeV)

°Fe | [0.464)\ | 7.96 x 10° 0.95

®“Ni | [0.452 || 2.71 x 10° 2.61

°*Ni | 0437 || 1.3 x10” 4.31

ONi 0.424 | 1.48 x 107 4.45

*OKr 0.419 | 3.12 x 107 5.66

. **Se 0.405 | 1.10 x 10" 8.49

Neutron rich 2Ge | 0.390 | 2.80 x 107 11.4
matter *U7Zn 0.375 | 5.44 x 10" 14.1
T~ ™Ni_ || 0.359 | 9.64 x 10 16.8

Ru—| 0.350 [ 1.29 x 10" 18.3

Mo || 0.339 | 1.88x 10" 20.6

27y 11 0.328 || 2.67 x 10" 22.9

208r 110.317 [| 3.79 x 10" 25.4

VSKr o | \0.305/ | 4.31 x 10" 26.2

U

Haensel and Pichon

Astron.Astrophys. 283 (1994) 313
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Then there are many unbound neutrons 2 / A~ 0.1
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Compressing cold matter

Differently from the “lab case”, weak equilibrium in Neutron Stars has all the time to work.

Favored isotopes in the NS crust

/™ 2\
Isotope | Z/A\ | pi(g/em®) | pd (MaV)
°Fe | [0.464\ | 7.96 x 10° /0.95 \
®“Ni | [0.452 || 2.71 x 10° 2.61
°*Ni | 0437 || 1.3 x10” 4.31
%ONi 0.424 | 1.48 x 107 4.45
S0Kr 0.419 | 3.12x 10° 5.66
. **Se 0.405 | 1.10 x 10'° 8.49
Neutron rich 2Ge | 0.390 | 2.80 x 107 11.4
matter 0Zn | 0.375 | 5.44 x 101° 14.1
T~ N 0.359 | 9.64 x 107 16.8 many electrons
TP Ru—a| 0.350 1.29 x 10! 18.3 /
2IMo |1 0.339 | 1.88x 10T | | 20.6 |
=27r 11 0.328 || 2.67 x 10M | | 229 |
20sr 110.317 [| 3.79x 10 | | 254 | .
8Ky | \0.305/ | 4.31x 10T | \262/ «—— neutron drip
\/ Haensel and Pichon
Astron.Astrophys. 283 (1994) 313
Then there are many unbound neutrons Z/A ~ (.1
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Inner crust 10" em—? < » <10 g e
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Proton and neutron density profiles along the lines joining two nuclei

J. W. Negele and D. Vautherin, Nucl. Phys. A207, 298 (1973).
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Quantum chromoynamics
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Symmetries
m =0

Three flavor massless quark matter

m — OO

Quenched QCD (pure Yang-Mills)

gauge group global chiral global baryonic
symmetry number Polyakov loop
p
\ / \ / L ="Pexp Z/ drs A
0
SU(S)C XSU L XSU U(l)B

remarkably e 7% = (L)
D U (1)e.m.]
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Symmetries
m =0

Three flavor massless quark matter

m — OO

Quenched QCD (pure Yang-Mills)

auge grou global chiral global baryonic
sauet sTotp symmetry number Polyakov loop
p
\ / \ / L = Pexp Z/ dCU4A4
SU(3)e x SU(3)L x SU(3)r xU(1)g :
h hs remarkably e %% = (L)
DU (1)e.m.] Y

Chiral symmetry amounts to rotate Gauge invariant, but sensitive to the

independently the left- and right-handed
quark fields

center symmetry:
L— L =zL

These rotations can be locked by the
(yy) condensate

with 2, = ¢27mik/Ne

Low T: the center symmetry holds
(LY =0

Low T: chiral symmetry broken
(py) # 0

High T: chiral symmetry holds High T: The center symmetry is broken

(wy) =0 (L) # 0



Deconfinement and chiral symmetry breaking

m: mass of quark fields

m 4 ™
Quenched QCD (pure Yang-Mills) m — o

Center symmetry: Z(N,.), broken at 77, (first order phase transition)

Order parameter for deconfinement: <Polyakov loop>
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Center symmetry: SU(Np); X SU(Np)g, brokenat T,

Order parameter for chiral symmetry breaking: chiral condensate ()
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m: mass of quark fields

m 4 ™
Quenched QCD (pure Yang-Mills) m — o

Center symmetry: Z(N,.), broken at 77, (first order phase transition)

Order parameter for deconfinement: <Polyakov loop>
N Y

QCD I'p and T, are pseudo-critical temperatures

Chiral limit m =20

Center symmetry: SU(Np); X SU(Np)g, brokenat T,

Order parameter for chiral symmetry breaking: chiral condensate ()

N\ J
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Weird thing: In a theory with no dynamical quarks, the <Polyakov loop> is related to
the confinement of quarks.
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To keep in mind

1) The Polyakov loop is related to quark confinement, not to gluon confinement.

Weird thing: In a theory with no dynamical quarks, the <Polyakov loop> is related to
the confinement of quarks.

2) There is no fundamental reason why 1, and 1), should be the same.

However, QCD has only one scale, and it is natural to expect that
these pseudo-critical temperatures are similar

3) Apart from these theory group arguments, it is important to have a
phenomenological description of confinement (and chiral symmetry breaking)
as associated to a change of degrees of freedom.
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CONFINED HADRONS

BARYONS

proton neutron

My, ~ 1GeV > my, 4

r, ~ 1fm = 107 °m

In the infrared baryons are blob of gluons
with 3 valence quarks.

Not a “bound state” of quarks, rather a
soliton or in any case a nonperturbative
object.

MESONS

pions

My ~ 135 MeV > my, 4

r. ~ 0.7fm My, = Mg # 0
C. Patrignani et al. (PDG)

(pseudo) Nambu-Goldstone bosons

Heavy mesons

Q0

Nonrelativistic object
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The double role of mesons

Pions can be associated with the

spontaneous chiral symmetry breaking plons
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The double role of mesons

Pions can be associated with the

spontaneous chiral symmetry breaking plons
O [U(Dem ]
‘l' my ~ 135 MeV > my, 4
b ~ 0.7fm
(W1p) # 0 Fm
2 1
§ UR2)y x Ul )Bz 3 (pseudo) Nambu-Goldstone bosons (NGBs)

Heavy mesons can be thought as Heavy mesons

bound states of heavy quarks:
The mass of a heavy meson is smaller than @ @
the mass of its constituents.

Good for probing confinement Nonrelativistic models
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Deconfinement by increasing temperature
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Increasing T
Fixed low B

At high energies,
matter interact so strongly to produce
a large number of mesons and baryons

At a critical temperature there is saturation:
the nucleons lose their identity and start to overlap.
Quarks and gluons are liberated
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Heavy quarkonia as probes

VACUUM

Anti-screening

1) Dual superconductor
2) It is a bound state
3) Strong decay is OZI suppressed

4) Potential models can be used

84

V(r)~or——

r

Increasing T and/or y; HQ can dissociate by the combination of different effects

T

Medium effects

Debye screening

See Tuesday talks for dicepton signals!

Landau damping
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Debye Screening
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The plasma screens chromo-electric fields: thermal unbinding Matsui and Satz, (1986).
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Debye Screening
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The plasma screens chromo-electric fields: thermal unbinding Matsui and Satz, (1986).
Expect similar effect by 1;: Kakade and Patra, (2015), Carignano and Soto, (2020).
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In a thermal medium, no strictly stationary bound state exists.
Interactions with the particles of the medium imply a finite lifetime for all states.
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Landau damping See thursday talks on quarkonium!

In a thermal medium, no strictly stationary bound state exists.
Interactions with the particles of the medium imply a finite lifetime for all states.
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In medium heavy quarks

“Brownian motion” of Heavy Quarks (HQs) in the QGP
While propagating in the QGP heavy quarks interact with in-medium quarks and gluons

p
(resonant ) scattering of heavy quarks with a light quark

promptly generated HQ

N\

T~

U U
In medium quark /

\_

Replacing the light quark with a heavy quark, one has quarkonia generation Thews et al. (2001)

See Tuesday and Wednesday talks!
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Color superconductor
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Deconfinement by baryonic density increase

quark baryon
. %
point-like ~1 fm

Very high density (Compact Star inner core)

o >
K 0‘ 0\6}
o C ®

diquark

@ ()

~10 fm

Liquid of quarks with

correlated diquarks

Attractive interaction (perturbative)

3><3:3A—|—63

t

attractive channel




The interaction model

We have to use a model for QCD at densities reachable in compact stars.

One possibility is a NJL-like model with the same global symmetries of QCD
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The interaction model

We have to use a model for QCD at densities reachable in compact stars.

One possibility is a NJL-like model with the same global symmetries of QCD

Free Lagrangian Lo = Y(iv’0, — M + pyo)y
+
Contact interaction Lint = —g Py A Py A4y

M = diag(m,m, mg)i;
K= Hij,ap

coupling constant

spin, color, flavor
structure

33



Diquark Condensate

a,8=1,2,3 color indices
Quark fields ’(p i

i,7=1,2,3 flavor indices

Mixture of 9 different fermions. Six of them are relativistic, three are non relativistic
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Diquark Condensate

a,8=1,2,3 color indices

Quark fields ’(p i

i,7=1,2,3 flavor indices

Mixture of 9 different fermions. Six of them are relativistic, three are non relativistic

-
General color

superconducting condensate color structure

«— flavor structure

3
<¢on;c%¢5j> X ZAIFZQMQJJ

gap parameters

It has a color charge It has a flavor charge It has a baryonic charge

The corresponding symmetries are broken, locked or mixed

34



Color Flavor Locked phase

Condensate
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Symmetry breaking
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Color Flavor Locked phase

Condensate
($aiCy5vp5) ~ AcFL €1ap€r; Pairing of quarks of all flavors and colors
Alford, Rajagopal, Wilczek Nucl.Phys. B537 (1999) 443
4 )
Symmetry breaking
SU(3)e x SUB)L x SUB)r x U(l)g — SU(3)errtr X Zo
— ——
> U(1)q D U(1)q
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® Breaking of SU(3).: 8 gauge bosons become massive. It 1s like having 8 (interacting) photons
with a Meissner mass.

® ¥SB: 8 (pseudo) Nambu-Goldstone bosons (NGBs) as in the hadronic phase!
® U(l)p breaking: 1 NGB. This 1s a genuine superfluid mode.



Color Flavor Locked phase

Condensate
($aiCy5vp5) ~ AcFL €1ap€r; Pairing of quarks of all flavors and colors
Alford, Rajagopal, Wilczek Nucl.Phys. B537 (1999) 443
4 )
Symmetry breaking
SU(3)e x SUB)L x SUB)r x U(l)g — SU(3)errtr X Zo
— ——
> U(1)q D U(1)q
. /

® Breaking of SU(3).: 8 gauge bosons become massive. It 1s like having 8 (interacting) photons
with a Meissner mass.

® ¥SB: 8 (pseudo) Nambu-Goldstone bosons (NGBs) as in the hadronic phase!
® U(l)p breaking: 1 NGB. This 1s a genuine superfluid mode.

The system is at the same time a (color) superconductor and a (baryonic) superfluid
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Pion condensation

-

Stabilization

The pion decay can be Pauli blocked

for a large lepton chemical potential
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Pion condensation

s , , D
Stabilization pion decay in vacuum
T+ Uy
The pion decay can be Pauli blocked WL
for a large lepton chemical potential @@= ===="" )
14
A A A
(R — My—  — o = My—f — —
\ ™~
fie —
e — —
—
lepton density
N y
s D
Energy spectrum splitting Ero = \/m2 + p?
Stark-like effect Eo- = +pr + /m2 + p2
Ep+ = —pr 4+ /m2 + p?
pion condensation (1)o2y51))
N y
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Phases of meson condensates

Hs/mg
<K’> | <K'>
-~ 3 -
~~~~~~~ PUNG——
? Dashed: first order
_ 05 N Solid: second order
<T > - <T >
4 —2 2 g Hlm
—0.5}
i Kogut and Toublan PhysRevD.64.034007
_,_——”’/}m/ Rl MM, Particles 2, no.3, 411-443 (2019)
- | ~~~“~
<K > <K’>

At asymptotic g, and/or ¢ matter should be deconfined in a rather unusual way



T-u; phase diagram

| T T T T | T T T T |

200 Quark gluon plasma  ,_;

I
!

Q
P-loop=1 A"-

\ RS-

150 - /

chiral crossover

™\ Second order

=
S
LQCD

Pion

Normal Phase Condensation

0.5 1.0 1.5
,Ul/mfr

Combination of LQCD by Brandt et al, PRD 97, 054514 (2018) with effective field methods.

M.M. Particles 2 (2019) n0.3, 411-443
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Identify the hadronic phases by quark condensates

In each phase different quark condensates are realized

4 ) 4

Color
.I-Iadron gas superconductors
chiral condensate diquark condensate
S W)
4 ] ) 4 )
Meson superfluid Quark-gluon plasma
pion condensate
(Yoo ys1) no condensate
. J . J

Each quark condensate breaks or locks the symmetries of QCD
in a different way
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The QCD phase diagram
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A symmetry breaking path (two flavor quark matter)
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Revisiting the QCD phase dlagram

I quark-gluon
TCJ plasma
,' CroSSOver .:,.'
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superconductor
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Second order
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pion condensed
1 phase
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M.M. Particles 2 (2019) no.3, 411-443



Conclusions

® Chiral symmetry and quark confinement pertain to two
different limits of QCD

® They should be approximately realized in real QCD

® Any physically sound tool to explore QCD should be used,
even going to unphysical parameter space

@ There is arichness of phases due to a rich particle spectrum
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Thanks for your attention!



Back up
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Effective field theories



Effective field theories

If we do not use QCD we want theories that preserve (part of) its symmetries
and that are capable of describing the symmetry breaking patterns

Lattice QCD Effective field theories

Discretization on a lattice. Describe global symmetries of QCD
Does not work at large baryonic densities Lack the gauge field dynamics



Qualitative picture

Any effective theory can be characterized by

separation scale

particle content

matching condition

method of regularization/cancelation of divergencies

QCD is a renormalizable theory: any divergency can be removed.

This results in a theory which has been very successfully compared to experiments.
No UV scale has appeared so far. In other words, if QCD is the low energy EFT
of a more fundamental one, we still have not found the breaking scale.

When dealing with EFT of QCD, we always have to keep in mind that there

exists a breaking scale. The scale is associated to a change of degrees of freedom
or to an internal inconsistency of the EFT.

Example: chiral perturbation theory is a low-energy theory with breaking scale

Beyond this point one has to consider the mesonic resonances, baryons and then
quarks and gluons. Which means changing the degrees of freedom, of interactiopetc. Thi

IS not impossible, it is only extremely hard and does not seem to be simpler than solving
QCD itself. 49



Hard thermal loop (HTL)

Resummed perturbation theory

(9,1
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Pion condensation

-
More on the method

® The O(p®) Lorentz invariant chiral
Lagrangian density for pions

F2 2
0;"’” Tr(%)

F2
L = IOTr(D,,ZD”ET) +

e SU(2) variational vev

Y =9 =cosa+i1n - osino
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Pion condensation

-

~
More on the method

® The O(p®) Lorentz invariant chiral
Lagrangian density for pions

encode medium effects
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Pion condensation

-

~
More on the method

® The O(p®) Lorentz invariant chiral
Lagrangian density for pions

encode medium effects
R
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P aen = {1.20,1.25,1.275}m,,

Our method gives an ANALYTIC expression for the peak

~N

peak

P = (V13 = 2)Y2m, ~ 1.276 m,

J 51




Variational approach

> =1ocosatin-osino

Static Lagrangian

Fg 5

Lo(a, pir,n3) = Fym? cosoz+7u15m 2

a(l —n3)
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Variational approach

Static Lagrangian

> = 15 cosa

Lo(a, iy, n3) = Fim2 cos

Maximising the Lagrangian

M - O SIn &

o+ 7/1] sin a(1 — n3)

~

.

for uy < my
for ur > mx

cosa =1
COS Qr = M2/ 1

Lo independent of nn A

ng = 0 residual O(2) symmetry
y

The vacuum has been tilt in some direction in isospin space
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Variational approach

> =1ocosatin-osino

Static Lagrangian

Fg 5

Lo(a, pur,ng) = Fim?2 cos o + 7/1[ sin a(1 — n3)
Maximising the Lagrangian
r ; N
for py < ma cosa — 1 Lo independent of n
for py > my COS Qr = M2/ 1 ng = 0 residual O(2) symmetry
N y

The vacuum has been tilt in some direction in isospin space

We now look for solutions in which the rotation is local
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More about the leading order Lagrangian

The O (p2 )Lorentz invariant Lagrangian density for pions

Fg

F2
L= ZTr(p,,ZDVZT) -0

2
;”W Tr(%)

Trick for introducing the isospin. We define the covariant derivative

1 Gasser and Leutwyler,
l)’u Z — 8,u Z — 5 [’UM : Z] Annals Phys. 158, 142 (1984)

Formally preserving the Lorentz invariance

Then we take v = uros §HY
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BEC of pions!

(tu) = (dd) o< cos a

(dysu + h.c.) o< sin o

Rotated condensates

Control parameter 7 = L
TN
2. 2 2
Pressure P = JaMa o (1 _ i)
Y
2 2
Ground state 5 1
occupation number nr = frmzy |1 - F
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Pion fluctuations

Mass splitting

proportional to the isospin charge
M0 = My
My— = Mg + 123§

Mp+ = Mg — U1
The meson mass vanishes at the phase transition
0%V
m2

T4 ~ 2

unstable vacuum %

stable vacuum
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Leptonic decays

Processes % — (Tyand T4 — (*u,
r
o . .
oL ¢ = u solid line
N 7 condensation ¢ = e dashed line

— F,u‘Vﬂ/FOM
— T, /T,
=== TL'e3/To,
- Fe+ ve/l—‘Oe

5 |=

56 A. Mammarella and M.M. Phys.Rev. D92 (2015) 8, 085025



Deconfinement by increasing temperature

Pions @ Baryons @ Anti Baryons @
Increasing T Fixed Low T
Fixed low B Increasing s
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Color screening

VACUUM

Anti-screening

M. Laine et al. JHEP 0703, 054 (2007)

See Thursday talks
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Color screening

VACUUM QGP

Anti-screening Screening

1000

Pioneering work by Matsui and Satz

Charmonia melting by Debye Screening
Phys.Lett. B178 (1986) 416-422

500

One can use quarkonia melting as a

“thermometer” of the QGP temperature
-500  §

Landau damping is a competitive phenomenon

-1000 —I RBC-Bielefeld Collaboration 548 r++ M, Laine et al. JHEP 0705, 054 (2007)

0 0.5 1 1.5 2 2.5

See Thursday talks


https://arxiv.org/find/hep-lat/1/au:+Collaboration_RBC_Bielefeld/0/1/0/all/0/1

