SDD qualification for kaonic atoms measurements

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

Francesco Sgaramella On behalf of SIDDHARTA-2 collaboration

New Monolithic Silicon Drift Detectors for X-ray spectroscopy

the second secon

Francesco Sgaramella

SIDDHARTA-2 Ceramic carrier

New Monolithic Silicon Drift Detectors for X-ray spectroscopy

SDD schematic picture

SDD cross section

SDD Energy Response

SDD Energy Response

SDD Energy Response - Linearity

28/05/2021

Francesco Sgaramella

SDD Energy Response – Energy Resolution and Stability

Time [min]

SDD Energy spectrum in function to the drift voltage

SDD linearity in function to the drift voltage

SDD Energy spectrum in function to the drift voltage

SDD gain in function to the drift voltage

FWHM[eV] V[V]

$K\alpha$ Fe FWHM

 $FWHM_{tot}^2 = FWHM_{intr}^2 + FWHM_{noise}^2$

$$_{e} + FWHM_{c.c}^{2}$$

28/05/2021

Francesco Sgaramella

Tail-Gauss Events Ratio

paper in preparation

SDD Timing response

Event signal on the leakage ramp of the SDD

Francesco Sgaramella

Iliescu M. et al. 2021, Reducing the MIPs Charge-Sharing Background in X-Ray Spectroscopic SDD Arrays IEEE Trans. Instrum. Meas. 70 9507807.

SDD Timing Response

28/05/2021

Francesco Sgaramella

SDD Timing response

SDD timing response in function to the temperature

paper in preparation

28/05/2021

28/05/2021

Conclusions

- Accurate qualification of the new monolithic Silicon Drift Detectors
 - ***** Energy Response: Identified the SDD working range 90 V \leq V_D \leq 170 V within:
 - The energy response is linear within 3 eV (energy range 4 keV 12 keV), Consequently, the systematic error due to SDD calibration is about 3 eV
 - The energy resolution for $K\alpha$ Fe is about 150 eV FWHM
 - Verified the stability
 - Timing Response: study of the drift time in function to the temperature and definition of the ideal working temperature for the SIDDHARTA-2 experiment. The drift time (400 ns) is a factor two better than the SDDs of SIDDHARTA: better background rejection

