STRANU: Hot Topics in STRANgeness NUclear and Atomic Physics ECT*, 24-28 May, 2021

Anti-kaon nucleon scattering amplitude measured below the KN mass threshold

Hiroyuki Noumi^{*,#} for the J-PARC E31 collaboration

* RCNP, Osaka University # Institute of Particle and Nuclear Studies, KEK

$\Lambda(1405)$ since 1961

 Well-known lightest Hyperon Resonance w/ a negative parity, sitting just below the KbarN mass threshold

$\Lambda(1405): 1405.1^{+1.3}$ MeV (PDG in 2020) $J^{p} = \frac{1}{2}$, I = 0, $M_{\Lambda(1405)} < M_{K^{bar}N}$, lightest in neg. parity baryons

$\Lambda(1405)$: Double pole? $J^{p} = \frac{1}{2}$, I = 0, $M_{\Lambda(1405)} < M_{K^{bar}N}$, lightest in neg. parity baryons

Pole Structure of the Lambda(1405) Region PDG Reviews: Ulf-G. Meissner and T. Hyodo (Nov. 2015)

A(1405) POLE POSITION

REAL PART

VALUE (MeV)	DOCUMENT I	TECN		
• • • We do not use the follo	wing data for avera	ges, fits,	limits, etc. •	• •
$1429 + \frac{8}{7}$	¹ MAI	15	DPWA	
1434± 2	² MAI	15	DPWA	
$1421^{+}_{-}\frac{3}{2}$	GUO	13	DPWA	
1424 + 7	IKEDA	12	DPWA	
$\frac{1}{2}$ Solution number 4.				

² Solution number 2.

-2×IMAGINARY PART

VALUE (MeV)	DOCUMENT ID		TECN
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	, fits,	limits, etc. • • •
24^{+}_{-6}	¹ MAI	15	DPWA
20^{+}_{-2}	² MAI	15	DPWA
38^{+16}_{-10}	GUO	13	DPWA
52^{+6}_{-28}	IKEDA	12	DPWA
$\frac{1}{2}$ Solution number 4. Solution number 2.			

A(1380) POLE POSITION

REAL PART VALUE (MeV)	ID	TECN	
• • • We do not use the follow	ving data for avera	ges, fits,	limits, etc. • • •
1325 ± 15	¹ MAI	15	DPWA
$1330^{+}_{-}\frac{4}{5}$	² MAI	15	DPWA
$1388\pm$ 9	GUO	13	DPWA
1381^{+18}_{-6}	IKEDA	12	DPWA
¹ Solution number 4.			

² Solution number 2.

-2×IMAGINARY PART

VALUE (MeV)	MeV) DOCUMENT ID			
• • • We do not use the follow	ing data for avera	ges, fits,	limits, etc. • • •	
180^{+24}_{-36}	¹ MAI	15	DPWA	
112^{+34}_{-22}	² MAI	15	DPWA	
228 + 48 - 50	GUO	13	DPWA	
162^{+38}_{-16}	IKEDA	12	DPWA	
¹ Solution number 4. ² Solution number 2.				

$\Lambda(1405): 1405.1^{+1.3}$ MeV (Part. Listing in '20) $J^{p} = \frac{1}{2}, I = 0, M_{\Lambda(1405)} \ll M_{K^{bar}N}$, lightest in neg. parity baryons

M. Hassanvand et al: $\pi\Sigma$ IM Spec. of pp $\rightarrow K^{+}\pi\Sigma$

J. Esmaili et al: $\pi\Sigma$ IM Spec. of Stopped K⁻ on ⁴He

R.H. Dalitz et al: $\pi\Sigma$ IM Spec. in K-p \rightarrow ππΣ w/ M-matrix

Pole S PDG R	on	. Morimats TABLE II. gle-channel s -shell factoriz	U and K. Yamad Pole positions of scatterings and the zation, A and B, and	a, RPC100, 02 the T-matrix in $\bar{K}N$ - $\pi\Sigma$ coupled d with on-shell fa	5201(2019) the $\bar{K}N$ and π channels with actorization, <i>C</i>	τΣ out	egion 2015)
REAL PART VALUE (MeV)		Single channel		Coupled channels		:	
• • • We do not use 1429 ⁺ ⁸ − 7		Κ̈́N	$\pi \Sigma$	ĒΛ	/-πΣ		i s, etc. ● ● VA
1434 ± 2 1421 + 3 - 2	A	1432 MeV	1388-179i MeV	1434-7 <i>i</i> MeV	1418-160 <i>i</i> M	eV	∕ > <mark>NA</mark> >NA
1424 + 7	B	1425 MeV	1382-169i MeV	1419-19 <i>i</i> MeV	1424-146i M	eV	> <mark>NA</mark>
¹ Solution number ² Solution number	С	1427 MeV	1388-96i MeV	1432-17iMeV	1398-73 <i>i</i> Me	eV	
-2×IMAGINARY							:
 VALUE (MeV) ● ● We do not use to 	the follo	<u>DOCUMENT ID</u> wing data for averages	$\frac{TECN}{1}$, fits, limits, etc. • • •	VALUE (MeV)	<u>DOCUMENT ID</u> following data for average	s. fits	$\frac{TECN}{1}$
24^+_{-6}		¹ MAI	15 DPWA	180^{+24}_{-36}	¹ MAI	15	DPWA
$20^{+}_{-}\frac{4}{2}$		² MAI	15 DPWA	112 + 34 - 22	² MAI	15	DPWA
38^{+16}_{-10}		GUO	13 DPWA	228 + 48 - 50	GUO	13	DPWA
52^{+6}_{-28}		IKEDA	12 DPWA	$162 + \frac{38}{-16}$	IKEDA	12	DPWA
¹ Solution number 4 ² Solution number 2				¹ Solution number 4. ² Solution number 2.			

$\Lambda(1405): 1405.1^{+1.3}$ MeV (Part. Listing in '20) $J^{p} = \frac{1}{2}, I = 0, M_{\Lambda(1405)} M_{K^{bar}N}$, lightest in neg. parity baryons

M. Hassanvand et al: $\pi\Sigma$ IM Spec. of pp $\rightarrow K^+\pi\Sigma$

J. Esmaili et al: $\pi\Sigma$ IM Spec. of Stopped K⁻ on ⁴He

R.H. Dalitz et al: $\pi\Sigma$ IM Spec. in K-p $\rightarrow \pi\pi\Sigma$ w/ M-matrix

Questions on $\Lambda(1405)$

K^{bar}N int. and its pole position are still unclear.
 Basic information on Kaonic Nuclei

Important to study Low Energy K^{bar}N scattering

Experimental Setup for E31

K^{bar}N scattering below the K^{bar}N thres. (J-PARC E31)

■ measuring an *S*-wave $\overline{K}N \to \pi\Sigma$ scattering below the $\overline{K}N$ threshold in the $d(K^{-},n)\pi\Sigma$ reactions at a forward angle of *n*.

ID's all the final states to decompose the I=0 and 1 ampl's.

$\pi^{\pm}\Sigma^{\mp}$	I=0, 1	Λ (1405) (I=0, S wave), non-resonant[I=0/1] (Σ(1385) (I=1, P wave) to be suppressed)
$\pi^-\Sigma^0$ $[\pi^-\Lambda]$	I=1	non-resonant (Σ (1385) to be suppressed) $d(K^{-},p)\pi^{-}\Sigma^{0}[\pi^{-}\Lambda]$
$\pi^0 \Sigma^0$	I=0	Λ(1405) (I=0, S wave) , non-resonant

Event topology of $d(K^-, n)X_{\pi^{\pm}\Sigma^{\mp}}$

$$d(K^-,n\pi^+\pi^-)$$
"n" samples contain...

Signal Events

$$d(K^-, n)X_{\pi^{\pm}\Sigma^{\mp}}$$

Major Background Events

Event topology of $d(K^-, n)X_{\pi^0\Sigma^0}$

BG Process: $d(K^{-}, n) X_{\pi^{0}\Lambda}, d(K^{-}, n) X_{\pi^{0}\pi^{0}\Lambda}, d(K^{-}, \Sigma^{-}p) X$

 $d(K^-,n)\pi^0\Sigma^0$ vs $d(K^-,n)\pi^-\Sigma^+$

Other BG processes

Event topology of $d(K^-, p)X_{\pi^-\Sigma^0}$

$[\pi^{\pm}\Sigma^{\mp} - \pi^{-}\Sigma^{0}]/2 \operatorname{vs} \pi^{0}\Sigma^{0}(I=0)$

$$\frac{d\sigma}{d\Omega} \left([\pi^{\pm} \Sigma^{\mp} - \pi^{-} \Sigma^{0}]/2 \right) \propto \frac{1}{3} |f_{I=0}|^{2}$$

$$\frac{d\sigma}{d\Omega}(\pi^0\Sigma^0)\propto \frac{1}{3}|f_{I=0}|^2$$

20

Description of the reaction

• 1-step process

• 2-step process

Extracting Scattering Amplitude

2-step process

 $\frac{d\sigma}{dM_{\pi\Sigma}}\Big|_{\theta_n=0} \sim |\langle n\pi\Sigma|T_2^I(\overline{K}N \to \pi\Sigma)G_0T_1(K^-N \to \overline{K}N)|K^-\Phi_d\rangle|^2$ $\sim |T_2^I(\overline{K}N \to \pi\Sigma)|^2 F_{\rm res}(M_{\pi\Sigma})$

Factorization Approximation

$$F_{\rm res}(M_{\pi\Sigma}) \sim \left| \int_0^\infty dq_{N_2}^3 T_1 \frac{1}{E_{\bar{K}} - E_{\bar{K}}(q_{\bar{K}}) + i\epsilon} \Phi_d(q_{N_2}) \right|^2, q_{\bar{K}} + q_{N_2} = q_{\pi\Sigma}$$

E31: Response Function, $F_{res}(M_{\pi\Sigma})$ • $F_{\text{res}}(M_{\pi\Sigma}) = \left| \int G_0(q_2, q_1) T_1 \Phi_d(q_2) d^3 q_2 \right|^2$ $-G_0(q_2, q_1) = \frac{1}{q_0^2 - q'^2 + i\varepsilon} f(q_0, q') \frac{\left(\sqrt{P_{\pi\Sigma}^2 + M_{\pi\Sigma}^2} + \sqrt{P_{\pi\Sigma}^2 + W(q')^2}\right)}{M_{\pi\Sigma} + W(q')}$ $f(q_0,q')^{-1} = [E_1(q_0) + E_1(q')]^{-1} + [E_2(q_0) + E_2(q')]^{-1}$ K. Miyagawa and J. Haidenbauer, PRC85, 065201(2012) $-T_1: K^-n \rightarrow K^-n \ (I=1), K^-p \rightarrow \overline{K}^0n (I=0,1)$ amplitude, Gopal et al., NPB119, 362(1977)

- $T_1(K^-n \to K^-n) = f(I=1)$
- $T_1(K^-p \to \overline{K}^0 n) = [f(I=1) f(I=0)]/2$

Off-shell treatment :See eq.(17) in PRC94, 065205

 $-\Phi_d(q_2)$: deuteron wave function, PRC63, 024001(2001)

Elementary Cross Section for T_1

E31: Response Function, $F_{res}(M_{\pi\Sigma})$

 $F_{\text{res}}(M_{\pi\Sigma}) \sim p_{\pi}^{cm} p_{n}^{2} / |(E_{K^{-}} + m_{d})\beta_{n} - p_{K^{-}} \cos \theta | \times \int d\Omega_{\pi}^{cm} E_{\pi} E_{\Sigma} \left| \int q_{2} T_{1}(p_{K^{-}}, q_{N}, p_{n}, q_{\overline{K}}, \cos \theta_{n\overline{K}}; M_{\pi\Sigma}) G_{0}(q_{2}, q_{1}) \Phi_{d}(q_{2}) d^{3}q_{2} \right|^{2}$

Demonstration for fitting data with the 1-step $K^-d \rightarrow nK^0"n"$ reaction calculation

• Data: $d(K^-, n)\overline{K}^0n$ Ks/KL, BR(Ks->pi+-) corrected (K. Inoue)

KN Scattering Amplitude

L. Lensniak, arXiv:0804.3479v1(2008)

- $T_2^I(\overline{K}N \to \overline{K}N) = \frac{A}{1 iAk_2 + \frac{1}{2}ARk_2^2}$ • $T_2^I(\overline{K}N \to \pi\Sigma) = \frac{1}{\sqrt{k_1}} e^{i\delta_0} \frac{\sqrt{ImA - \frac{1}{2}|A|^2 ImRk_2^2}}{1 - iAk_2 + \frac{1}{2}ARk_2^2}$ • $T_2^I(\pi\Sigma \to \pi\Sigma)$ $=\frac{e^{i\delta_0}}{k_1}\frac{\left(\sin\delta_0+iIm\left(e^{-i\delta_0}A\right)k_2-\frac{1}{2}Im\left(e^{-i\delta_0}AR\right)k_2^2\right)}{1-iAk_2+\frac{1}{2}ARk_2^2}$
- 5 real number parameters (effective range expansion)
 A: scattering length, R: effective range, δ₀: phase

To deduce \overline{KN} scattering amplitude

$$\frac{d\sigma}{dM_{\pi\Sigma}}\Big|_{\theta_n=0} \sim |T_2^I|^2 F_{\rm res}(M_{\pi\Sigma})$$

$\overline{K}N$ scattering amplitude (charged+ $\pi^0\Sigma^0$)

$$\frac{d\sigma}{dM_{\pi\Sigma}}\Big|_{\theta_n=0} \sim |T_2^I(\overline{K}N \to \pi\Sigma)|^2 F_{\rm res}(M_{\pi\Sigma})$$

 $\overline{K}N$ scattering amplitude (charged+ $\pi^0\Sigma^0$)

$$\frac{d\sigma}{dM_{\pi\Sigma}}\Big|_{\theta_n=0} \sim \big|T_2^I(\overline{K}N \to \pi\Sigma)\big|^2 F_{\rm res}(M_{\pi\Sigma})$$

Scattering Length A(I=0) =Effective Range R(I=0) =

 $\overline{K}N$ scattering amplitude (charged+ $\pi^0\Sigma^0$)

A pole at ~1416 MeV/ c^2 $\left|T_2^{I=0}(\overline{K}N \to \overline{K}N)\right|^2 / \left|T_2^{I=0}(\overline{K}N \to \pi\Sigma)\right|^2 \sim 1.9$

SUMMARY

- Pole position of L(1405) seems consistent to those of the so-called higher pole suggested by the ChUM based calculations.
- The pole is likely to couple to the $\overline{K}N$ state.