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Motivation
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Heavy-ion collisions:

Figure: By Prof. Chun Shen
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Heavy-ion collisions:

Non-central relativistic heavy-ion collisions creates global rotation of
matter, which may induce spin polarization.

Emerging particles are expected to be globally polarized with their
spins on average pointing along the systems angular momentum.
nucl-th/0410079, nucl-th/0410089, arXiv:0708.0035.

Source: CERN Courier
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Global polarization:

The first positive measurement of Λ(Λ̄) global spin polarization by STAR.

Figure: Average polarization P̄H (where H = Λ or Λ̄) versus collision energy in
20-50% central Au+Au collisions.

Source: L. Adamczyk et al.(STAR), Nature 548 (2017) 62-65
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Global polarization:
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Even larger than...

Figure: Jupiter great red spot (10−4s−1) & Nanodroplets of superfluid helium
(107s−1).

1301.6119, Science 345, 906–909 (2014)
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Longitudinal polarization:

Good agreement between experiment and models on global polarization.
0711.1253, 1304.4427, 1303.3431, 1501.04468, 1610.02506, 1610.04717, 1605.04024, 1703.03770

But...

Figure: Longitudinal polarization of Λ-Λ̄ (1905.11917)
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Bigger picture:

This study will help us to know the formation and characteristics of
the QGP, a state of matter believed to exist at sufficiently high
energy densities.

Detecting and understanding the QGP allows us to understand better
the universe in the moments after the Big Bang.
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Methodology
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Our approach:

Include spin degrees of freedom into the ideal standard
hydrodynamics to form spin hydrodynamics formalism.

Jµ,αβ(x) = xαTµβ(x)− xβTµα(x) + Sµ,αβ(x)

And, conservation of total angular momentum, ∂λJ
λ,µν(x) = 0 gives

∂λS
λ,µν(x) = T νµ(x)− Tµν(x)

For symmetric energy-momentum tensor, T νµ
GLW(x) = Tµν

GLW(x),

we have ∂λS
λ,µν
GLW(x) = 0

Hence conservation of the angular momentum implies the
conservation of its spin part in the de Groot-van Leeuwen-van Weert
(GLW) formulation.
1705.00587, 1712.07676, 1806.02616, 1811.04409, S. R. De Groot et. al., Relativistic Kinetic Theory: Principles and

Applications (1980).
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Our spin hydrodynamic framework:

Solving the standard perfect-fluid hydrodynamic equations without
spin.

Determination of the spin evolution in the hydrodynamic background.

Determination of the Pauli-Lubański (PL) vector on the freeze-out
hypersurface.

Calculation of the spin polarization of particles in their rest frame.
The spin polarization obtained is a function of the three-momenta of
particles and can be directly compared with the experiment.
1901.09655
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Conservation laws
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Conservation of net baryon number:

dαN
α(x) = 0

where,

Nα = 4 sinh(
µ

T
) N(0)U

α

Here, µ is baryon chemical potential, T is temperature and Uµ is 4-vector
fluid flow.
N(0) is number density for the case of ideal relativistic gas of classical
massive particles (and antiparticles).

1811.04409
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Conservation of energy and linear momentum:

dαT
αβ(x) = 0

where for perfect-fluid,

Tαβ = 4 cosh(
µ

T
)
[
(E(0) + P(0))UαUβ − P(0)g

αβ
]

E(0) and P(0) are the energy density and pressure for the case of ideal
relativistic gas of classical massive particles (and antiparticles),
respectively.

1811.04409
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Above conservation laws (charge and energy-linear momentum) provide
closed system of five equations for five unknown functions:
µ, T , and three independent components of Uµ (hydrodynamic flow
vector) which needs to be solved to get the hydrodynamic background.
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Conservation of spin:

dαS
α,βγ
GLW(x) = 0

GLW spin tensor in the leading order of ωµν is:

Sα,βγGLW = cosh( µT )
(
N(0)U

αωβγ + Sα,βγ∆GLW

)
Here, ωβγ is known as spin polarization tensor, whereas the auxiliary
tensor Sα,βγ∆GLW is:

Sα,βγ∆GLW = A(0)U
αUδU [βω

γ]
δ

+B(0)

(
U [β∆αδω

γ]
δ + Uα∆δ[βω

γ]
δ + Uδ∆α[βω

γ]
δ

)
,

with,

∆µν = gµν − UµUν

B(0) = − 2
(m/T )2 (E(0) + P(0))/T

A(0) = −3B(0) + 2N(0)

1811.04409
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Spin polarization tensor:

ωµν is an anti-symmetric tensor of rank 2 and can be defined by the
four-vectors κµ and ωµ,

ωµν = κµUν − κνUµ + εµναβU
αωβ,

where,

κα = CκXX
α + CκYY

α + CκZZ
α, ωα = CωXX

α + CωYY
α + CωZZ

α

U, X , Y and Z form a 4-vector basis satisfying the following normalization
conditions:

U · U = 1

X · X = Y · Y = Z · Z = −1,

X · U = Y · U = Z · U = 0,

X · Y = Y · Z = Z · X = 0.

Assumption: Restricted to leading order terms in ωµν .
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Connection to experiment
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Mean spin polarization per particle:

〈πµ〉 =
Ep

dΠµ(p)
d3p

Ep
dN (p)
d3p

The above equation is the ratio of the invariant momentum distribution of
the total Pauli-Lubański vector and the momentum density of particles and
antiparticles expressed as

Ep
dΠµ(p)

d3p
=

cosh( µT )

(2π)3m

∫
∆Σλp

λ e−β·p ω̃βµ pβ

and

Ep
dN (p)

d3p
=

4 cosh( µT )

(2π)3

∫
∆Σλp

λ e−β·p

respectively, where ω̃µν = (1/2)εµναβωαβ is the dual polarization tensor
and ∆Σλ is the infinitesimal element of the freeze-out hypersurface.

Rajeev Singh (IFJ PAN) Spin Hydrodynamics 21 / 48



Polarization vector 〈π?µ〉 in the local rest frame of the particle can be
obtained by using the canonical boost.

Components of 〈π?µ〉 are then obtained as functions of transverse
momentum components px and py in mid-rapidity, which can be
compared with the experiment.

Rajeev Singh (IFJ PAN) Spin Hydrodynamics 22 / 48



Boost-invariant and transversely homogeneous flow
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Perfect-fluid background dynamics:

Conservation law of charge can be written as:

Uα∂αn + n∂αU
α = 0

Therefore, for Bjorken type of flow we can write,

∂τn + n
τ = 0

Conservation law of energy-momentum can be written as:

Uα∂αε+ (ε+ P)∂αU
α = 0

Hence for the Bjorken flow,

∂τε+ (ε+P)
τ = 0

1901.09655
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Initial baryon chemical potential µ0 = 800 MeV
Initial temperature T0 = 155 MeV
Particle (Lambda hyperon) mass m = 1116 MeV

Initial and final proper time is τ0 = 1 fm and τf = 10 fm, respectively.

μT0/Tμ0

T/T0

2 4 6 8 10
0

1

2

3

4
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τ [fm]

μ
T
0
/T
μ
0
,T

/T
0

Figure: Proper-time dependence of T divided by its initial value T0 (solid line)
and the ratio of baryon chemical potential µ and temperature T re-scaled by the
initial ratio µ0/T0 (dotted line) for a boost-invariant one-dimensional expansion.

1901.09655
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Spin polarization coefficient evolution equations:

Contracting the spin conservation equation with UβXγ ,UβYγ ,UβZγ ,YβZγ ,XβZγ
and XβYγ .


L(τ) 0 0 0 0 0

0 L(τ) 0 0 0 0
0 0 L(τ) 0 0 0
0 0 0 P(τ) 0 0
0 0 0 0 P(τ) 0
0 0 0 0 0 P(τ)





ĊκX
ĊκY
ĊκZ
ĊωX
ĊωY
ĊωZ

 =


Q1(τ) 0 0 0 0 0

0 Q1(τ) 0 0 0 0
0 0 Q2(τ) 0 0 0
0 0 0 R1(τ) 0 0
0 0 0 0 R1(τ) 0
0 0 0 0 0 R2(τ)




CκX
CκY
CκZ
CωX
CωY
CωZ

 ,

A1 = cosh(µ
T

)
(
N(0) − B(0)

)
,

A2 = cosh(µ
T

)
(
A(0) − 3B(0)

)
,

A3 = cosh(µ
T

)B(0)

where,
L(τ) = A1 − 1

2
A2 −A3,

P(τ) = A1,

Q1(τ) = −
[
L̇ + 1

τ

(
L + 1

2
A3

)]
,

Q2(τ) = −
(
L̇ + L

τ

)
,

R1(τ) = −
[
Ṗ + 1

τ

(
P − 1

2
A3

)]
,

R2(τ) = −
(
Ṗ + P

τ

)
.
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Spin polarization coefficients evolution:

CκX

CκZ
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Figure: Proper-time dependence of the coefficients CκX , CκZ , CωX and CωZ . The
coefficients CκY and CωY satisfy the same differential equations as the
coefficients CκX and CωX .
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Momentum dependence of polarization:
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Figure: Components of the PRF mean polarization three-vector of Λ’s. The
results obtained with the initial conditions µ0 = 800 MeV, T0 = 155 MeV,
Cκ,0 = (0, 0, 0), and Cω,0 = (0, 0.1, 0) for yp = 0.

1901.09655
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Summary
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Discussed relativistic hydrodynamics with spin based on the GLW
formulation of energy-momentum and spin tensors.

Showed how our formalism can be compared with the experiments.

Obtained dynamics of spin polarization in the Bjorken background.

Incorporation of spin in full 3+1D hydro model required to address the

problem of longitudinal polarization (which will be out pretty soon, stay

tuned).
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Thank you for your attention!
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Extra Slides
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Measuring polarization in experiment:

Source: T. Niida, WWND 2019
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Einstein-De Haas Effect (1915): Rotation induced by Magnetization
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Barnett Effect (1915): Magnetization induced by Rotation
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Figure: Schematic view of STAR Detector
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Pseudo-gauge transformations

T̂µν = T̂µν
C +

1

2
∂λ(Φ̂λ,µν + Φ̂ν,µλ + Φ̂µ,νλ)

Ŝλ,µν = Ŝλ,µνC − Φ̂λ,µν + ∂ρẐ
µν,λρ

where, Φ̂λ,µν and Ẑµν,λρ are arbitrary differentiable operators called
super-potentials satisfying
Φ̂λ,µν = −Φ̂λ,νµ and Ẑµν,λρ = −Ẑ νµ,λρ = −Ẑµν,ρλ

→ The newly defined tensors preserve the total energy, linear momentum,
and angular momentum after integrated over the freeze-out hypersurface.
→ Conservation laws are unchanged.
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Spin polarization coefficient evolution equations:

Contracting the spin conservation equation with UβXγ ,UβYγ ,UβZγ ,YβZγ ,XβZγ
and XβYγ .


L(τ) 0 0 0 0 0

0 L(τ) 0 0 0 0
0 0 L(τ) 0 0 0
0 0 0 P(τ) 0 0
0 0 0 0 P(τ) 0
0 0 0 0 0 P(τ)





ĊκX
ĊκY
ĊκZ
ĊωX
ĊωY
ĊωZ

 =


Q1(τ) 0 0 0 0 0

0 Q1(τ) 0 0 0 0
0 0 Q2(τ) 0 0 0
0 0 0 R1(τ) 0 0
0 0 0 0 R1(τ) 0
0 0 0 0 0 R2(τ)




CκX
CκY
CκZ
CωX
CωY
CωZ

 ,

A1 = cosh(ξ)
(
n(0) − B(0)

)
,

A2 = cosh(ξ)
(
A(0) − 3B(0)

)
,

A3 = cosh(ξ)B(0)

where,
L(τ) = A1 − 1

2
A2 −A3,

P(τ) = A1,

Q1(τ) = −
[
L̇ + 1

τ

(
L + 1

2
A3

)]
,

Q2(τ) = −
(
L̇ + L

τ

)
,

R1(τ) = −
[
Ṗ + 1

τ

(
P − 1

2
A3

)]
,

R2(τ) = −
(
Ṗ + P

τ

)
.
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Conformal symmetry:

In general, for a system to respect conformal symmetry, its dynamics
should be invariant under Weyl rescaling. It implies that the (m, n)-type
tensors (including scalars with (m, n) = (0, 0)) transform homogeneously,
namely

Aµ1...µm
ν1...νn (x) → Ω∆AAµ1...µm

ν1...νn (x)

where Ω ≡ e−ϕ(x) with ϕ(x) being function of space-time coordinates and
∆A = [A] + m − n is the conformal weight of the quantity A, where [A] is
its mass dimension, and m and n being the number of contravariant and
covariant indices, respectively.
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Transformation rules:

The transformation rules to map the quantities expressed in de Sitter
coordinates back to the polar Milne coordinates can be written as

Uµ(τ, r) = τ
∂x̂ν

∂xµ
Ûν(ρ) ,

E(τ, r) =
Ê(ρ)

τ4
, P(τ, r) =

P̂(ρ)

τ4
, N (τ, r) =

N̂ (ρ)

τ3
,

T (τ, r) =
T̂ (ρ)

τ
, µ(τ, r) =

µ̂(ρ)

τ
.
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Conformal transformation of conservation equations:

For the 4D spacetime the conservation law for net baryon number is
already conformal-frame independent, i.e. net baryon number is conserved
in both Minkowski and de Sitter space-times. In this case, one can write

dαN
α = Ω4d̂αN̂

α

Conservation of energy and linear momentum transforms as

dαT
αβ = Ω6

[
d̂αT̂

αβ − T̂λ
λĝ

βδ∂δϕ
]

We see that T̂αβ needs to be traceless in order to be conserved in de
Sitter spacetime. Therefore, the breaking of conformal invariance is
characterized only by the trace of the energy-momentum tensor
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Conformal transformation of the conservation law for spin takes the form

dαS
αβγ = Ω6

[
d̂αŜ

αβγ − (Ŝ λγ
λ ĝβσ + Ŝαβαĝ

σγ)∂σϕ
]
.

We find that the conformal invariance of the spin conservation law requires
the spin tensor to satisfy the condition Ŝ αβ

α = 0.
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Gubser flow
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Solve the perfect-fluid hydrodynamical equations using the Gubser
flow.

Obtain analytical solutions for T and µ.

Derive the equations of motion for spin polarization components in de
Sitter coordinates.

The background solutions are not spoiled by the breaking of the
symmetry at the level of angular momentum conservation.

The coupling between the spin polarization coefficients emerge due to
the conformal symmetry breaking.
2011.14907
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Space-time evolution of Temperature:

T (τ0 = 1 fm, r = 0) = 1.2 fm−1

Figure: The space-time dependence of temperature (contours) and flow-vector

components (Uτ ,U r ) /
√

(Uτ )2 + (U r )2 (stream lines – the coloring of arrows is

given by the rapidity ϑ).

2011.14907
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Spin polarization coefficients:

Figure: Numerical solutions for aR and bR components of the spin polarization
tensor as functions of proper time τ and radial distance r .

2011.14907
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Bjorken-expanding resistive MHD background
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Spin polarization dynamics:

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

1.2

τ [fm]

b
Z

sNN = 27 GeV

2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

2.5

τ [fm]

b
Z

sNN = 200 GeV

Figure: Spin polarization coefficient bZ profile for
√
sNN = 27GeV (left panel)

and
√
sNN = 200GeV (right panel) with initial value b0

Z = 0.1. The modification
of the bZ evolution slope due to electric field is much more pronounced when
µ0/T0 is small as can be seen in the right panel. Dotted black line is for α = −8,
red line is for α = 0 and dashed blue line is for α = 8.
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