Vorticity and polarization of Lambda hyperons

Rajeev Singh

rajeev.singh@ifj.edu.pl

Collaborators:

Wojciech Florkowski (IF UJ), Radoslaw Ryblewski (IFJ PAN), Avdhesh Kumar (NISER), Gabriel Sophys (IFJ PAN), and Masoud Shokri (IPM)

Based on: arXiv:2103.02592, arXiv:2011.14907, arXiv:1901.09655

24-28 May, 2021 STRANU Workshop

Supported by IFJPAN and the NCN Grants No. 2016/23/B/ST2/00717 and No. 2018/30/E/ST2/00432

Outline:

- Motivation.
- Methodology.
- Conservation laws.
- Connection to experiment.
- Use of our formalism for boost-invariant and transversely homogeneous flow set-up.
- Summary.

Motivation

Heavy-ion collisions:

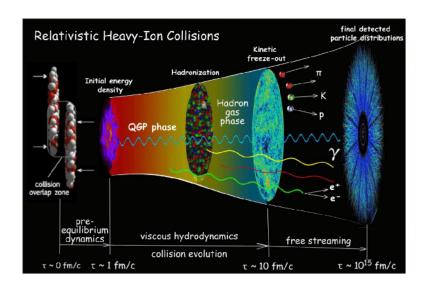
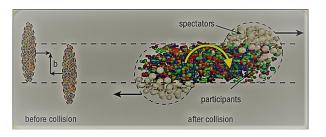


Figure: By Prof. Chun Shen

Heavy-ion collisions:

- Non-central relativistic heavy-ion collisions creates global rotation of matter, which may induce spin polarization.
- Emerging particles are expected to be globally polarized with their spins on average pointing along the systems angular momentum.

nucl-th/0410079, nucl-th/0410089, arXiv:0708.0035.



Source: CERN Courier

Global polarization:

The first positive measurement of $\Lambda(\bar{\Lambda})$ global spin polarization by STAR.

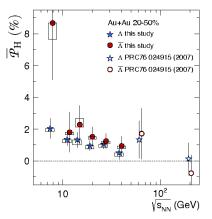
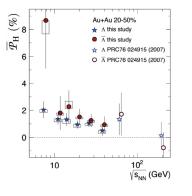


Figure: Average polarization $\bar{\mathcal{P}}_H$ (where $H=\Lambda$ or $\bar{\Lambda}$) versus collision energy in 20-50% central Au+Au collisions.

Source: L. Adamczyk et al.(STAR), Nature 548 (2017) 62-65

Global polarization:

First positive measurements of global spin polarization of Λ hyperons by STAR



$$\begin{array}{ccc} \text{thermal approach} & \longrightarrow & P_{\Lambda} \approx \frac{1}{2} \frac{\omega}{T} + \frac{\mu_{\Lambda} B}{T} & P_{\overline{\Lambda}} \approx \frac{1}{2} \frac{\omega}{T} - \frac{\mu_{\Lambda} B}{T} \\ & \text{Becattini, F., Karpenko, I., Lisa, M., Upsal, I., Voloshin, S., PRC 95, 054902 (2017)} \end{array}$$

...the hottest, least viscous – and now, most vortical – fluid produced in the laboratory ... $\omega = \left(P_{\Lambda} + P_{\overline{\Lambda}}\right) k_{B}T/\hbar \sim 0.6 - 2.7 \times 10^{22} \text{s}^{-1}$ L. Adamczyk et al. (STAR) (2017). Nature 548 (2017) 62-65

Even larger than...

Figure: Jupiter great red spot $(10^{-4}s^{-1})$ & Nanodroplets of superfluid helium (10^7s^{-1}) .

1301.6119, Science 345, 906-909 (2014)

Longitudinal polarization:

Good agreement between experiment and models on global polarization.

0711.1253, 1304.4427, 1303.3431, 1501.04468, 1610.02506, 1610.04717, 1605.04024, 1703.03770

But...

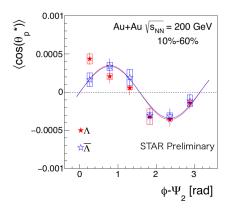


Figure: Longitudinal polarization of Λ - $\bar{\Lambda}$ (1905.11917)

Bigger picture:

 This study will help us to know the formation and characteristics of the QGP, a state of matter believed to exist at sufficiently high energy densities.

 Detecting and understanding the QGP allows us to understand better the universe in the moments after the Big Bang.

Methodology

Our approach:

 Include spin degrees of freedom into the ideal standard hydrodynamics to form spin hydrodynamics formalism.

•
$$J^{\mu,\alpha\beta}(x) = x^{\alpha} T^{\mu\beta}(x) - x^{\beta} T^{\mu\alpha}(x) + S^{\mu,\alpha\beta}(x)$$

- And, conservation of total angular momentum, $\partial_{\lambda}J^{\lambda,\mu\nu}(x)=0$ gives $\partial_{\lambda}S^{\lambda,\mu\nu}(x)=T^{\nu\mu}(x)-T^{\mu\nu}(x)$
- For symmetric energy-momentum tensor, $T_{\rm GLW}^{\nu\mu}(x)=T_{\rm GLW}^{\mu\nu}(x)$, we have $\partial_{\lambda}S_{\rm GLW}^{\lambda,\mu\nu}(x)=0$
- Hence conservation of the angular momentum implies the conservation of its spin part in the de Groot-van Leeuwen-van Weert (GLW) formulation.

1705.00587, 1712.07676, 1806.02616, 1811.04409, S. R. De Groot *et. al.*, Relativistic Kinetic Theory: Principles and Applications (1980).

Our spin hydrodynamic framework:

- Solving the standard perfect-fluid hydrodynamic equations without spin.
- Determination of the spin evolution in the hydrodynamic background.

- Determination of the Pauli-Lubański (PL) vector on the freeze-out hypersurface.
- Calculation of the spin polarization of particles in their rest frame.
 The spin polarization obtained is a function of the three-momenta of particles and can be directly compared with the experiment.

1901 09655

Conservation laws

Conservation of net baryon number:

$$d_{\alpha}N^{\alpha}(x)=0$$

where,

$$N^{\alpha} = 4 \sinh(\frac{\mu}{T}) \mathcal{N}_{(0)} U^{\alpha}$$

Here, μ is baryon chemical potential, T is temperature and U^{μ} is 4-vector fluid flow.

 $\mathcal{N}_{(0)}$ is number density for the case of ideal relativistic gas of classical massive particles (and antiparticles).

1811.04409

Conservation of energy and linear momentum:

$$d_{\alpha}T^{\alpha\beta}(x)=0$$

where for perfect-fluid,

$$T^{\alpha\beta} = 4\cosh(\frac{\mu}{T}) \Big[(\mathcal{E}_{(0)} + \mathcal{P}_{(0)}) U^{\alpha} U^{\beta} - \mathcal{P}_{(0)} g^{\alpha\beta} \Big]$$

 $\mathcal{E}_{(0)}$ and $\mathcal{P}_{(0)}$ are the energy density and pressure for the case of ideal relativistic gas of classical massive particles (and antiparticles), respectively.

1811.04409

Above conservation laws (charge and energy-linear momentum) provide closed system of five equations for five unknown functions: μ , T, and three independent components of U^{μ} (hydrodynamic flow

 μ , T, and three independent components of O^{r} (hydrodynamic now vector) which needs to be solved to get the hydrodynamic background.

Conservation of spin:

$$d_{\alpha}S_{\mathrm{GLW}}^{\alpha,\beta\gamma}(x)=0$$

GLW spin tensor in the leading order of $\omega_{\mu\nu}$ is:

$$S_{ ext{GLW}}^{lpha,eta\gamma}=\cosh(rac{\mu}{T})\left(\mathcal{N}_{(0)}\mathit{U}^{lpha}\omega^{eta\gamma}+S_{\Delta ext{GLW}}^{lpha,eta\gamma}
ight)$$

Here, $\omega^{\beta\gamma}$ is known as spin polarization tensor, whereas the auxiliary tensor $S_{\Lambda \text{GLW}}^{\alpha,\beta\gamma}$ is:

$$S_{\Delta \text{GLW}}^{\alpha,\beta\gamma} = \mathcal{A}_{(0)} U^{\alpha} U^{\delta} U^{[\beta} \omega_{\delta}^{\gamma]} + \mathcal{B}_{(0)} \left(U^{[\beta} \Delta^{\alpha\delta} \omega_{\delta}^{\gamma]} + U^{\alpha} \Delta^{\delta[\beta} \omega_{\delta}^{\gamma]} + U^{\delta} \Delta^{\alpha[\beta} \omega_{\delta}^{\gamma]} \right),$$

with,

$$\begin{split} \Delta^{\mu\nu} &= g^{\mu\nu} - U^{\mu}U^{\nu} \\ \mathcal{B}_{(0)} &= -\frac{2}{(m/T)^2} (\mathcal{E}_{(0)} + \mathcal{P}_{(0)})/T \\ \mathcal{A}_{(0)} &= -3\mathcal{B}_{(0)} + 2\mathcal{N}_{(0)} \end{split}$$

Spin polarization tensor:

 $\omega_{\mu\nu}$ is an anti-symmetric tensor of rank 2 and can be defined by the four-vectors κ^{μ} and ω^{μ} ,

$$\omega_{\mu\nu} = \kappa_{\mu} U_{\nu} - \kappa_{\nu} U_{\mu} + \epsilon_{\mu\nu\alpha\beta} U^{\alpha} \omega^{\beta},$$

where,

$$\kappa^{\alpha} = \textit{C}_{\kappa \textit{X}} \textit{X}^{\alpha} + \textit{C}_{\kappa \textit{Y}} \textit{Y}^{\alpha} + \textit{C}_{\kappa \textit{Z}} \textit{Z}^{\alpha}, \quad \omega^{\alpha} = \textit{C}_{\omega \textit{X}} \textit{X}^{\alpha} + \textit{C}_{\omega \textit{Y}} \textit{Y}^{\alpha} + \textit{C}_{\omega \textit{Z}} \textit{Z}^{\alpha}$$

U, X, Y and Z form a 4-vector basis satisfying the following normalization conditions:

$$U \cdot U = 1$$

$$X \cdot X = Y \cdot Y = Z \cdot Z = -1,$$

$$X \cdot U = Y \cdot U = Z \cdot U = 0,$$

$$X \cdot Y = Y \cdot Z = Z \cdot X = 0.$$

Assumption: Restricted to leading order terms in $\omega^{\mu\nu}$.

Connection to experiment

Mean spin polarization per particle:

$$\langle \pi_{\mu} \rangle = \frac{E_{p} \frac{d\Pi_{\mu}(p)}{d^{3}p}}{E_{p} \frac{d\mathcal{N}(p)}{d^{3}p}}$$

The above equation is the ratio of the invariant momentum distribution of the total Pauli-Lubański vector and the momentum density of particles and antiparticles expressed as

$$E_p rac{d\Pi_{\mu}(p)}{d^3p} = rac{\cosh(rac{\mu}{T})}{(2\pi)^3 m} \int \Delta \Sigma_{\lambda} p^{\lambda} e^{-\beta \cdot p} \, \tilde{\omega}_{\beta \mu} \, p^{eta}$$

and

$$E_p rac{d\mathcal{N}(p)}{d^3p} = rac{4\cosh(rac{\mu}{T})}{(2\pi)^3} \int \Delta\Sigma_{\lambda} p^{\lambda} e^{-eta \cdot p}$$

respectively, where $\tilde{\omega}^{\mu\nu}=(1/2)\epsilon^{\mu\nu\alpha\beta}\omega_{\alpha\beta}$ is the dual polarization tensor and $\Delta\Sigma_{\lambda}$ is the infinitesimal element of the freeze-out hypersurface.

• Polarization vector $\langle \pi_{\mu}^{\star} \rangle$ in the local rest frame of the particle can be obtained by using the canonical boost.

• Components of $\langle \pi_{\mu}^{\star} \rangle$ are then obtained as functions of transverse momentum components p_x and p_y in mid-rapidity, which can be compared with the experiment.

Perfect-fluid background dynamics:

Conservation law of charge can be written as:

$$U^{\alpha}\partial_{\alpha}n + n\partial_{\alpha}U^{\alpha} = 0$$

Therefore, for Bjorken type of flow we can write,

$$\partial_{\tau} n + \frac{n}{\tau} = 0$$

• Conservation law of energy-momentum can be written as:

$$U^{\alpha}\partial_{\alpha}\varepsilon + (\varepsilon + P)\partial_{\alpha}U^{\alpha} = 0$$

Hence for the Bjorken flow,

$$\partial_{\tau}\varepsilon + \frac{(\varepsilon + P)}{\tau} = 0$$

1901 09655

Initial baryon chemical potential $\mu_0=800~{\rm MeV}$ Initial temperature $T_0=155~{\rm MeV}$ Particle (Lambda hyperon) mass $m=1116~{\rm MeV}$

Initial and final proper time is $\tau_0=1$ fm and $\tau_f=10$ fm, respectively.

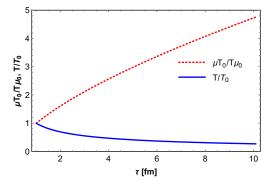


Figure: Proper-time dependence of T divided by its initial value T_0 (solid line) and the ratio of baryon chemical potential μ and temperature T re-scaled by the initial ratio μ_0/T_0 (dotted line) for a boost-invariant one-dimensional expansion.

1901.09655

Spin polarization coefficient evolution equations:

Contracting the spin conservation equation with $U_{\beta}X_{\gamma}$, $U_{\beta}Y_{\gamma}$, $U_{\beta}Z_{\gamma}$, $Y_{\beta}Z_{\gamma}$, $X_{\beta}Z_{\gamma}$ and $X_{\beta}Y_{\gamma}$.

$$\begin{bmatrix} \mathcal{L}(\tau) & 0 & 0 & 0 & 0 & 0 \\ 0 & \mathcal{L}(\tau) & 0 & 0 & 0 & 0 \\ 0 & 0 & \mathcal{L}(\tau) & 0 & 0 & 0 & 0 \\ 0 & 0 & \mathcal{L}(\tau) & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathcal{P}(\tau) & 0 & 0 \\ 0 & 0 & 0 & 0 & \mathcal{P}(\tau) & 0 \\ 0 & 0 & 0 & 0 & 0 & \mathcal{P}(\tau) \end{bmatrix} \begin{bmatrix} \dot{\mathcal{C}}_{\kappa X} \\ \dot{\mathcal{C}}_{\kappa Y} \\ \dot{\mathcal{C}}_{\omega X} \\ \dot{\mathcal{C}}_{\omega Y} \\ \dot{\mathcal{C}}_{\omega Z} \\ \dot{\mathcal{C}}_{\omega Z} \\ 0 & 0 & 0 & 0 & \mathcal{R}_{1}(\tau) & 0 & 0 \\ 0 & 0 & 0 & 0 & \mathcal{R}_{1}(\tau) & 0 \\ 0 & 0 & 0 & 0 & \mathcal{R}_{1}(\tau) & 0 \\ 0 & 0 & 0 & 0 & \mathcal{R}_{2}(\tau) \end{bmatrix} \begin{bmatrix} \mathcal{C}_{\kappa X} \\ \mathcal{C}_{\kappa Y} \\ \mathcal{C}_{\kappa Z} \\ \mathcal{C}_{\omega X} \\ \mathcal{C}_{\omega Z} \\ \mathcal{C}_{\omega Z} \\ \mathcal{C}_{\omega Z} \\ \mathcal{C}_{\omega Z} \end{bmatrix},$$

$$\begin{split} &\mathcal{L}(\tau) = \mathcal{A}_1 - \frac{1}{2}\mathcal{A}_2 - \mathcal{A}_3, \\ &\mathcal{P}(\tau) = \mathcal{A}_1, \\ &\mathcal{Q}_1(\tau) = -\left[\dot{\mathcal{L}} + \frac{1}{\tau}\left(\mathcal{L} + \frac{1}{2}\mathcal{A}_3\right)\right], \\ &\mathcal{Q}_2(\tau) = -\left(\dot{\mathcal{L}} + \frac{\mathcal{L}}{\tau}\right), \\ &\mathcal{R}_1(\tau) = -\left[\dot{\mathcal{P}} + \frac{1}{\tau}\left(\mathcal{P} - \frac{1}{2}\mathcal{A}_3\right)\right], \\ &\mathcal{R}_2(\tau) = -\left(\dot{\mathcal{P}} + \frac{\mathcal{P}}{\tau}\right). \end{split}$$

where.

$$\begin{split} \mathcal{A}_1 &= \cosh(\frac{\mu}{T}) \left(\mathcal{N}_{(0)} - \mathcal{B}_{(0)} \right), \\ \mathcal{A}_2 &= \cosh(\frac{\mu}{T}) \left(\mathcal{A}_{(0)} - 3\mathcal{B}_{(0)} \right), \\ \mathcal{A}_3 &= \cosh(\frac{\mu}{T}) \, \mathcal{B}_{(0)} \end{split}$$

Spin polarization coefficients evolution:

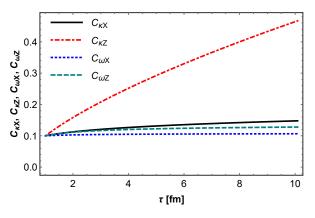


Figure: Proper-time dependence of the coefficients $C_{\kappa X}$, $C_{\kappa Z}$, $C_{\omega X}$ and $C_{\omega Z}$. The coefficients $C_{\kappa Y}$ and $C_{\omega Y}$ satisfy the same differential equations as the coefficients $C_{\kappa X}$ and $C_{\omega X}$.

1901.09655

Momentum dependence of polarization:

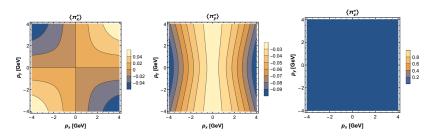


Figure: Components of the PRF mean polarization three-vector of Λ 's. The results obtained with the initial conditions $\mu_0=800$ MeV, $T_0=155$ MeV, $\boldsymbol{C}_{\kappa,0}=(0,0,0)$, and $\boldsymbol{C}_{\omega,0}=(0,0.1,0)$ for $y_p=0$.

1901.09655

Summary

- Discussed relativistic hydrodynamics with spin based on the GLW formulation of energy-momentum and spin tensors.
- Showed how our formalism can be compared with the experiments.
- Obtained dynamics of spin polarization in the Bjorken background.
- Incorporation of spin in full 3+1D hydro model required to address the problem of longitudinal polarization (which will be out pretty soon, stay tuned).

All **truths** are easy to understand once they are discovered; the point is to **discover them.**

– Galileo Galilei

AZ QUOTES

Thank you for your attention!

Extra Slides

Measuring polarization in experiment:

Parity-violating decay of hyperons

Daughter baryon is preferentially emitted in the direction of hyperon's spin (opposite for anti-particle)

$$\frac{dN}{d\mathbf{O}^*} = \frac{1}{4\pi} (1 + \alpha_{\mathbf{H}} \mathbf{P}_{\mathbf{H}} \cdot \mathbf{p}_{\mathbf{p}}^*)$$

P_H: A polarization

 p_p : proton momentum in the Λ rest frame α_H : Λ decay parameter

 $(\alpha \wedge = -\alpha \bar{\Lambda} = 0.642 \pm 0.013)$

$$\Lambda \rightarrow p + \pi^-$$
(BR: 63.9%, c τ ~7.9 cm)

C. Patrignani et al. (PDG), Chin. Phys. C 40, 100001 (2016)

Projection onto the transverse plane

Angular momentum direction can be determined by spectator deflection (spectators deflect outwards)
- S. Voloshin and TN. PRC94.021901(R)(2016)

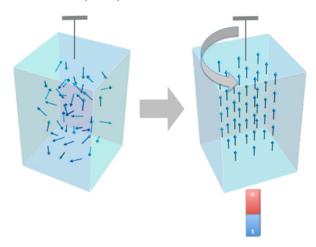
beam direction (z) $P_{\rm H} = \frac{8}{\pi \alpha_{\rm H}} \frac{\langle \sin(\Psi_1 - \phi_p^*) \rangle}{{\rm Res}(\Psi_1)}$

 Ψ_1 : azimuthal angle of b

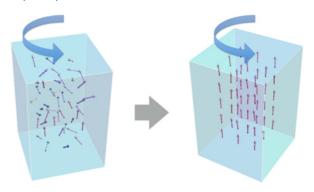
 ϕ_{p} *: ϕ of daughter proton in Λ rest frame STAR, PRC76, 024915 (2007)

Source: T. Niida, WWND 2019

Einstein-De Haas Effect (1915): Rotation induced by Magnetization



Barnett Effect (1915): Magnetization induced by Rotation



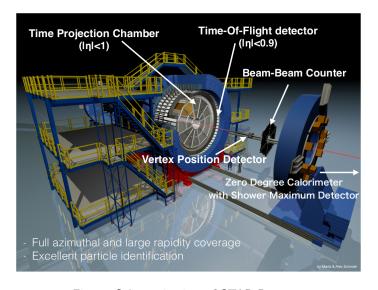


Figure: Schematic view of STAR Detector

Pseudo-gauge transformations

$$\hat{T}^{\mu\nu} = \hat{T}_{C}^{\mu\nu} + \frac{1}{2}\partial_{\lambda}(\hat{\Phi}^{\lambda,\mu\nu} + \hat{\Phi}^{\nu,\mu\lambda} + \hat{\Phi}^{\mu,\nu\lambda})
\hat{S}^{\lambda,\mu\nu} = \hat{S}_{C}^{\lambda,\mu\nu} - \hat{\Phi}^{\lambda,\mu\nu} + \partial_{\rho}\hat{Z}^{\mu\nu,\lambda\rho}$$

where, $\hat{\Phi}^{\lambda,\mu\nu}$ and $\hat{Z}^{\mu\nu,\lambda\rho}$ are arbitrary differentiable operators called super-potentials satisfying $\hat{\Phi}^{\lambda,\mu\nu} = -\hat{\Phi}^{\lambda,\nu\mu}$ and $\hat{Z}^{\mu\nu,\lambda\rho} = -\hat{Z}^{\nu\mu,\lambda\rho} = -\hat{Z}^{\mu\nu,\rho\lambda}$

 \rightarrow The newly defined tensors preserve the total energy, linear momentum, and angular momentum after integrated over the freeze-out hypersurface.

ightarrow Conservation laws are unchanged.

Spin polarization coefficient evolution equations:

Contracting the spin conservation equation with $U_{\beta}X_{\gamma}$, $U_{\beta}Y_{\gamma}$, $U_{\beta}Z_{\gamma}$, $Y_{\beta}Z_{\gamma}$, $X_{\beta}Z_{\gamma}$ and $X_{\beta}Y_{\gamma}$.

$$\begin{bmatrix} \mathcal{L}(\tau) & 0 & 0 & 0 & 0 & 0 \\ 0 & \mathcal{L}(\tau) & 0 & 0 & 0 & 0 \\ 0 & 0 & \mathcal{L}(\tau) & 0 & 0 & 0 & 0 \\ 0 & 0 & \mathcal{L}(\tau) & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathcal{P}(\tau) & 0 & 0 \\ 0 & 0 & 0 & 0 & \mathcal{P}(\tau) & 0 \\ 0 & 0 & 0 & 0 & 0 & \mathcal{P}(\tau) \end{bmatrix} \begin{bmatrix} \dot{\mathcal{C}}_{\kappa X} \\ \dot{\mathcal{C}}_{\kappa Y} \\ \dot{\mathcal{C}}_{\omega X} \\ \dot{\mathcal{C}}_{\omega Y} \\ \dot{\mathcal{C}}_{\omega Z} \\ \dot{\mathcal{C}}_{\omega Z} \\ 0 & 0 & 0 & 0 & \mathcal{R}_{1}(\tau) & 0 & 0 \\ 0 & 0 & 0 & 0 & \mathcal{R}_{1}(\tau) & 0 \\ 0 & 0 & 0 & 0 & \mathcal{R}_{1}(\tau) & 0 \\ 0 & 0 & 0 & 0 & \mathcal{R}_{2}(\tau) \end{bmatrix} \begin{bmatrix} \mathcal{C}_{\kappa X} \\ \mathcal{C}_{\kappa Y} \\ \mathcal{C}_{\kappa Z} \\ \mathcal{C}_{\omega X} \\ \mathcal{C}_{\omega Z} \\ \mathcal{C}_{\omega Z} \\ \mathcal{C}_{\omega Z} \\ \mathcal{C}_{\omega Z} \end{bmatrix},$$

$$\begin{split} &\mathcal{L}(\tau) \stackrel{\cdot}{=} \mathcal{A}_1 - \frac{1}{2}\mathcal{A}_2 - \mathcal{A}_3, \\ &\mathcal{P}(\tau) = \mathcal{A}_1, \\ &\mathcal{Q}_1(\tau) = -\left[\dot{\mathcal{L}} + \frac{1}{\tau}\left(\mathcal{L} + \frac{1}{2}\mathcal{A}_3\right)\right], \\ &\mathcal{Q}_2(\tau) = -\left(\dot{\mathcal{L}} + \frac{\mathcal{L}}{\tau}\right), \\ &\mathcal{R}_1(\tau) = -\left[\dot{\mathcal{P}} + \frac{1}{\tau}\left(\mathcal{P} - \frac{1}{2}\mathcal{A}_3\right)\right], \\ &\mathcal{R}_2(\tau) = -\left(\dot{\mathcal{P}} + \frac{\mathcal{P}}{\tau}\right). \end{split}$$

$$\begin{split} \mathcal{A}_1 &= \cosh(\xi) \left(n_{(0)} - \mathcal{B}_{(0)} \right), \\ \mathcal{A}_2 &= \cosh(\xi) \left(\mathcal{A}_{(0)} - 3\mathcal{B}_{(0)} \right), \\ \mathcal{A}_3 &= \cosh(\xi) \, \mathcal{B}_{(0)} \end{split}$$

Conformal symmetry:

In general, for a system to respect conformal symmetry, its dynamics should be invariant under Weyl rescaling. It implies that the (m, n)-type tensors (including scalars with (m, n) = (0, 0)) transform homogeneously, namely

$$A^{\mu_1\dots\mu_m}_{\nu_1\dots\nu_n}(x) \to \Omega^{\Delta_A}A^{\mu_1\dots\mu_m}_{\nu_1\dots\nu_n}(x)$$

where $\Omega \equiv e^{-\varphi(x)}$ with $\varphi(x)$ being function of space-time coordinates and $\Delta_A = [A] + m - n$ is the conformal weight of the quantity A, where [A] is its mass dimension, and m and n being the number of contravariant and covariant indices, respectively.

Transformation rules:

The transformation rules to map the quantities expressed in de Sitter coordinates back to the polar Milne coordinates can be written as

$$U_{\mu}(\tau, r) = \tau \frac{\partial \hat{x}^{\nu}}{\partial x^{\mu}} \hat{U}_{\nu}(\rho),$$

$$\mathcal{E}(\tau, r) = \frac{\hat{\mathcal{E}}(\rho)}{\tau^{4}}, \quad \mathcal{P}(\tau, r) = \frac{\hat{\mathcal{P}}(\rho)}{\tau^{4}}, \quad \mathcal{N}(\tau, r) = \frac{\hat{\mathcal{N}}(\rho)}{\tau^{3}},$$

$$T(\tau, r) = \frac{\hat{T}(\rho)}{\tau}, \qquad \qquad \mu(\tau, r) = \frac{\hat{\mu}(\rho)}{\tau}.$$

Conformal transformation of conservation equations:

For the 4D spacetime the conservation law for net baryon number is already conformal-frame independent, i.e. net baryon number is conserved in both Minkowski and de Sitter space-times. In this case, one can write

$$d_{\alpha}N^{\alpha}=\Omega^{4}\hat{d}_{\alpha}\hat{N}^{\alpha}$$

Conservation of energy and linear momentum transforms as

$$d_{lpha}T^{lphaeta}=\Omega^{6}\left[\hat{d}_{lpha}\hat{T}^{lphaeta}-\hat{T}^{\lambda}_{\ \ \lambda}\hat{g}^{eta\delta}\partial_{\delta}arphi
ight]$$

We see that $\hat{T}^{\alpha\beta}$ needs to be traceless in order to be conserved in de Sitter spacetime. Therefore, the breaking of conformal invariance is characterized only by the trace of the energy-momentum tensor

Conformal transformation of the conservation law for spin takes the form

$$d_{\alpha}S^{\alpha\beta\gamma} \ = \ \Omega^6 \left[\hat{d}_{\alpha} \hat{S}^{\alpha\beta\gamma} - (\hat{S}_{\lambda}^{\ \lambda\gamma} \hat{g}^{\beta\sigma} + \hat{S}^{\alpha\beta}_{\ \alpha} \hat{g}^{\sigma\gamma}) \partial_{\sigma} \varphi \right].$$

We find that the conformal invariance of the spin conservation law requires the spin tensor to satisfy the condition $\hat{\mathcal{S}}_{\alpha}^{\ \alpha\beta}=0$.

Gubser flow

- Solve the perfect-fluid hydrodynamical equations using the Gubser flow.
- Obtain analytical solutions for T and μ .
- Derive the equations of motion for spin polarization components in de Sitter coordinates.
- The background solutions are not spoiled by the breaking of the symmetry at the level of angular momentum conservation.
- The coupling between the spin polarization coefficients emerge due to the conformal symmetry breaking.

2011 14907

Space-time evolution of Temperature:

$$T(\tau_0 = 1 \,\mathrm{fm}, r = 0) = 1.2 \,\mathrm{fm}^{-1}$$

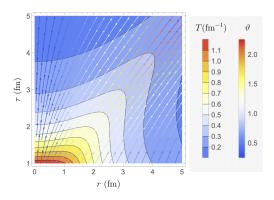


Figure: The space-time dependence of temperature (contours) and flow-vector components $(U^{\tau}, U^{r})/\sqrt{(U^{\tau})^{2}+(U^{r})^{2}}$ (stream lines – the coloring of arrows is given by the rapidity ϑ).

2011.14907

Spin polarization coefficients:

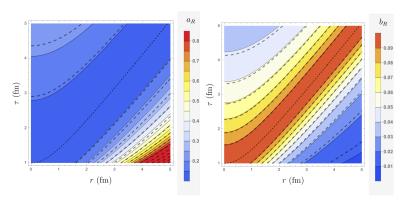


Figure: Numerical solutions for a_R and b_R components of the spin polarization tensor as functions of proper time τ and radial distance r.

2011.14907

Bjorken-expanding resistive MHD background

Spin polarization dynamics:

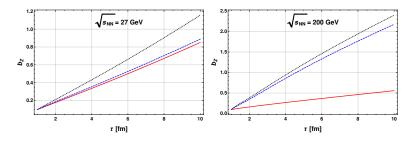


Figure: Spin polarization coefficient b_Z profile for $\sqrt{s_{\rm NN}}=27\,{\rm GeV}$ (left panel) and $\sqrt{s_{\rm NN}}=200\,{\rm GeV}$ (right panel) with initial value $b_Z^0=0.1$. The modification of the b_Z evolution slope due to electric field is much more pronounced when μ_0/T_0 is small as can be seen in the right panel. Dotted black line is for $\alpha=-8$, red line is for $\alpha=0$ and dashed blue line is for $\alpha=8$.

2103.02592