On the hypertriton decay rate

Axel Pérez-Obiol QUANTIC, Barcelona Supercomputing Center

> STRANU, ECT* May 27th 2021

Physics Letters B 811 (2020) 135916 A. P-O, D. Gazda, E. Friedman, A. Gal

1. Introduction & motivation 2. Calculation Why the hypertriton? lifetime

- Pion w.f.
- Weak operator

Outline

- From partial decay rate to
- NCSM and nuclear w.f.

3. Results Uncertainties Summary

 Λ +p+n bound state with I=0, J^P = 1/2⁺ Λ very loose: $B_{\Lambda} = 0.13 \pm 0.05$ MeV Decay is mostly non-leptonic $\Lambda \longrightarrow N+\pi$

 Λ +p+n bound state with I=0, J^P = 1/2⁺ Λ very loose: $B_{\Lambda} = 0.13 \pm 0.05$ MeV Decay is mostly non-leptonic $\Lambda \longrightarrow N+\pi$

How different is τ_{hyp} from $\tau_{\Lambda} = 263 \pm 2 \text{ ps}$?

 Λ +p+n bound state with I=0, J^P = 1/2⁺ Λ very loose: $B_{\Lambda} = 0.13 \pm 0.05$ MeV Decay is mostly non-leptonic $\Lambda \longrightarrow N+\pi$

Emulsion/BC experiments

- Block *et al.*, YRC-1964-001, 63 (1964)
- Keyes *et al.*, PRL **20**, 819 (1968).
- Phillips and J. Schneps, PR **180**, 1307 (1969).
- Keyes *et al.*., PRD **1**, 66 (1970).
- Bohm *et al.*, NPB **16**, 46 (1970).
- Keyes *et al.*, NPB **67**, 269 (1973).

How different is τ_{hyp} from $\tau_{\Lambda} = 263 \pm 2 \text{ ps}$?

 Λ +p+n bound state with I=0, J^P = 1/2⁺ Λ very loose: $B_{\Lambda} = 0.13 \pm 0.05$ MeV Decay is mostly non-leptonic $\Lambda \longrightarrow N+\pi$

- Rayet, Dalitz (1966): $\tau_{hvp} = 1.14 \tau_{\Lambda}$
- Congleton (1992): $\tau_{hyp} = 1.15 \tau_{\Lambda}$
- Kamada et al. (1998): $\tau_{hyp} = 1.06 \tau_{\Lambda}$
- Gal, Garcilazo (2019): $\tau_{hyp} = 1.23 \tau_{\Lambda}$
- Hildenbrand, Hammer (2020): $\tau_{hvp} \approx \tau_{\Lambda}$

How different is τ_{hyp} from $\tau_{\Lambda} = 263 \pm 2 \text{ ps}$?

Theory:

- ➡ Variational w.f., closure approx.
- \rightarrow d+ \wedge w.f., closure approx.
- Genuine 3B, Nijmegen SC NN+YN pot.
- \Rightarrow 3B w.f., closure approx., π DW enhances Γ
- \rightarrow d+ \wedge w.f., EFT approach, B_{\wedge} analysis

 Λ +p+n bound state with I=0, J^P = 1/2⁺ Λ very loose: $B_{\Lambda} = 0.13 \pm 0.05$ MeV Decay is mostly non-leptonic $\Lambda \longrightarrow N+\pi$

- Rayet, Dalitz (1966): $\tau_{hyp} = 1.14 \tau_{\Lambda}$
- Congleton (1992): $\tau_{hyp} = 1.15 \tau_{\Lambda}$
- Kamada et al. (1998): $\tau_{hyp} = 1.06 \tau_{\Lambda}$
- Gal, Garcilazo (2019): $\tau_{hyp} = 1.23 \tau_{\Lambda}$
- Hildenbrand, Hammer (2020): $\tau_{hvp} \approx \tau_{\Lambda}$

• P.-O., Gazda, Friedman, Gal (2020): $\tau_{hvp} = 0.6 - 0.76 \tau_{\Lambda}$

How different is τ_{hyp} from $\tau_{\Lambda} = 263 \pm 2 \text{ ps}$?

Theory:

- ➡ Variational w.f., closure approx.
- \rightarrow d+ \wedge w.f., closure approx.
- ➡ Genuine 3B, Nijmegen SC NN+YN pot.
- \Rightarrow 3B w.f., closure approx., π DW enhances Γ
- \rightarrow d+ \wedge w.f., EFT approach, B_{\wedge} analysis

 \star Focus on ${}^3_{\Lambda}H \rightarrow {}^3He + \pi^-$ and deduce τ_{hyp} **★** Full EFT w.f., ΣNπ, π DW, relation to B_{Λ}

non-leptonic modes, $\Lambda \rightarrow N + \pi$

$$\Gamma_{\pi^{-}} \begin{bmatrix} \Gamma(^{3}_{\Lambda}H \to \pi^{-} + {}^{3}He) \\ \Gamma(^{3}_{\Lambda}H \to \pi^{-} + d + p) \\ \Gamma(^{3}_{\Lambda}H \to \pi^{-} + p + p + n) \end{bmatrix} \begin{bmatrix} \Gamma(^{3}_{\Lambda}H \to \pi^{-} + p + p + n) \\ \Gamma(^{3}_{\Lambda}H \to \pi^{-} + p + p + n) \end{bmatrix}$$

 $\begin{array}{ll} & \text{N} + \pi & \text{non-mesonic modes, } \Lambda N \longrightarrow NN, \\ & \text{and pion true absorption} \\ H \rightarrow \pi^0 + d + n) & \Gamma_{nm} & \Gamma(^3_\Lambda H \rightarrow d + p) \\ H \rightarrow \pi^0 + p + n + n) & \Gamma(^3_\Lambda H \rightarrow p + p + n) \end{array}$

non-leptonic modes, $\Lambda \rightarrow N + \pi$

$$\Gamma_{\pi^{-}} \begin{vmatrix} \Gamma(^{3}_{\Lambda}H \to \pi^{-} + ^{3}He) \\ \Gamma(^{3}_{\Lambda}H \to \pi^{-} + d + p) \\ \Gamma(^{3}_{\Lambda}H \to \pi^{-} + p + p + n) \end{vmatrix} \qquad \Gamma_{\pi^{0}} \begin{vmatrix} \Gamma(^{3}_{\Lambda}H + p) \\ \Gamma(^{3}_{\Lambda}H + p) \\ \Gamma(^{3}_{\Lambda}H + p + p + n) \end{vmatrix}$$

1. Use He BC experimental ratio $R_3 = \frac{\Gamma(^3_{\Lambda}H \rightarrow ^3\text{He} + \pi^-)}{\Gamma_{\pi^-}(^3_{\Lambda}H)} = 0.35 \pm 0.04$ to add 3- and 4-body π^- modes Keves. Sacton, Wickens, Block, NPB 67 (1973) 269.

non-leptonic modes, $\Lambda \rightarrow N + \pi$

$$\Gamma_{\pi^{-}} \begin{vmatrix} \Gamma(^{3}_{\Lambda}H \to \pi^{-} + {}^{3}He) \\ \Gamma(^{3}_{\Lambda}H \to \pi^{-} + d + p) \\ \Gamma(^{3}_{\Lambda}H \to \pi^{-} + p + p + n) \end{vmatrix} \qquad \Gamma_{\pi^{0}} \begin{vmatrix} \Gamma(^{3}_{\Lambda}H \to \pi^{-} + p + p + n) \\ \Gamma(^{3}_{\Lambda}H \to \pi^{-} + p + p + n) \end{vmatrix}$$

2. Use $\Delta I = 1/2$ rule to add π^0 contributions

1. Use He BC experimental ratio $R_3 = \frac{\Gamma(^3_{\Lambda}H \rightarrow ^3\text{He} + \pi^-)}{\Gamma_{\pi^-}(^3_{\Lambda}H)} = 0.35 \pm 0.04$ to add 3- and 4-body π^- modes Keves. Sacton, Wickens, Block, NPB 67 (1973) 269.

$$S \Gamma_{\pi}(^{3}_{\Lambda}H) = \frac{3}{2}\Gamma_{\pi^{-}}(^{3}_{\Lambda}H)$$

non-leptonic modes, $\Lambda \longrightarrow N + \pi$

$$\Gamma_{\pi^{-}} \begin{vmatrix} \Gamma(^{3}_{\Lambda}H \to \pi^{-} + {}^{3}He) \\ \Gamma(^{3}_{\Lambda}H \to \pi^{-} + d + p) \\ \Gamma(^{3}_{\Lambda}H \to \pi^{-} + p + p + n) \end{vmatrix} \qquad \Gamma_{\pi^{0}} \begin{vmatrix} \Gamma(^{3}_{\Lambda}H \to \pi^{-} + p + p + n) \\ \Gamma(^{3}_{\Lambda}H \to \pi^{-} + p + p + n) \end{vmatrix}$$

1. Use He BC experimental ratio $R_3 = \frac{\Gamma(^3_{\Lambda}H)}{\Gamma(^3_{\Lambda}H)}$

2. Use $\Delta I = 1/2$ rule to add π^0 contributions

3. Add 1.5% from $\Lambda N \rightarrow NN$ and 0.8% from pion true absorption

Golak, Miyagawa, Kamada, Witala, Glöckle, Parreño, Ramos, Bennhold, PRC 55, 2196 (1997) Pérez-Obiol, Gazda, Friedman, Gal, PLB 811 (2020) 135916

$$\frac{\rightarrow {}^{3}\text{He} + \pi^{-})}{\Gamma_{\pi^{-}}({}^{3}_{\Lambda}\text{H})} = 0.35 \pm 0.04 \text{ to add 3- and 4-body }\pi^{-} \text{ mode}$$
Keyes, Sacton, Wickens, Block, NPB 67 (1973) 269.

$$S \Gamma_{\pi}(^{3}_{\Lambda}H) = \frac{3}{2}\Gamma_{\pi^{-}}(^{3}_{\Lambda}H)$$

es

non-leptonic modes, $\Lambda \rightarrow N + \pi$

$$\Gamma_{\pi^{-}} \begin{vmatrix} \Gamma(^{3}_{\Lambda}H \to \pi^{-} + {}^{3}He) \\ \Gamma(^{3}_{\Lambda}H \to \pi^{-} + d + p) \\ \Gamma(^{3}_{\Lambda}H \to \pi^{-} + p + p + n) \end{vmatrix} \qquad \Gamma_{\pi^{0}} \begin{vmatrix} \Gamma(^{3}_{\Lambda}H \to \pi^{-} + p + p + n) \\ \Gamma(^{3}_{\Lambda}H \to \pi^{-} + p + p + n) \end{vmatrix}$$

1. Use He BC experimental ratio $R_3 = \frac{\Gamma(^3_{\Lambda}H)}{\Gamma(^3_{\Lambda}H)}$

2. Use $\Delta I = 1/2$ rule to add π^0 contributions

3. Add 1.5% from $\Lambda N \rightarrow NN$ and 0.8% from pion true absorption

Golak, Miyagawa, Kamada, Witala, Glöckle, Parreño, Ramos, Bennhold, PRC 55, 2196 (1997)

 $\Gamma(^{3}_{\Lambda}H \to \pi^{-} + {}^{3}He) \longrightarrow \Gamma_{\pi^{-}} \xrightarrow{\times 3}{}$

$$\frac{\rightarrow {}^{3}\text{He} + \pi^{-})}{\Gamma_{\pi^{-}}({}^{3}_{\Lambda}\text{H})} = 0.35 \pm 0.04 \text{ to add 3- and 4-body } \pi^{-} \text{ mode}}$$
Keyes, Sacton, Wickens, Block, NPB 67 (1973) 269.

$$\mathbf{S} \Gamma_{\pi} ({}^{3}_{\Lambda} \mathbf{H}) = \frac{3}{2} \Gamma_{\pi^{-}} ({}^{3}_{\Lambda} \mathbf{H})$$

Pérez-Obiol, Gazda, Friedman, Gal, PLB 811 (2020) 135916

$$\xrightarrow{3/2} \Gamma_{\pi^{-}} + \Gamma_{\pi^{0}} \xrightarrow{\times 1.023} \Gamma_{\pi^{-}} + \Gamma_{\pi^{0}} + \Gamma_{nm}$$

es

$$\Gamma_m^{^{3}\text{He}} = \frac{3}{4\pi} \frac{M_{^{3}\text{He}}}{M_{^{3}\text{He}}} +$$

We need to input:

- 1. Nuclear wave functions
- 2. Pion wave function
- 3. Weak operator

Decay rate for ${}^3_{\Lambda}H \rightarrow {}^3He + \pi^-$

 $\frac{e^{q_{\pi}}}{+E_{\pi}} \sum_{\substack{m_{3} \in M \\ \Lambda^{3} \text{H}}} \sum_{m_{3} \in M} \left| \langle \psi_{3}_{\text{He}} \phi_{\pi} | \hat{O} | \psi_{3}_{\Lambda} H \rangle \right|^{2}$

$$\Gamma_{m}^{^{3}\text{He}} = \frac{3}{4\pi} \frac{M_{^{3}\text{He}}}{M_{^{3}\text{He}}} + \frac{3$$

We need to input:

- 1. Nuclear wave functions
- 2. Pion wave function
- 3. Weak operator

$$\Gamma_{^{13}S_{1}}^{^{3}He} = \frac{3}{4\pi} \frac{(G_{F}m_{\pi}^{2})^{2} M_{^{3}He} q}{M_{^{3}He} + E_{\pi}} \left(A_{\Lambda}^{2} + \frac{1}{36} \frac{B_{\Lambda}^{2} q_{\pi}^{2}}{\overline{M}_{\Lambda N}^{2}} \right) \times \left| \int dp_{12}' p_{12}'^{2} \int dp_{3}' p_{3}'^{2} \int d(\cos(\theta_{p_{3}'}) \times \psi_{^{13}S_{1}}(p_{12}', |p_{3}'\hat{p}_{3}' + r \vec{q}_{\pi}|) \psi_{^{13}S_{1}}(p_{12}', p_{3}') \right|^{2} dp_{13}' p_{3}'^{2} \int d(\cos(\theta_{p_{3}'}) \times \psi_{^{13}S_{1}}(p_{12}', |p_{3}'\hat{p}_{3}' + r \vec{q}_{\pi}|) \psi_{^{13}S_{1}}(p_{12}', p_{3}') \right|^{2} dp_{13}' p_{3}'^{2} \int d(\cos(\theta_{p_{3}'}) \times \psi_{^{13}S_{1}}(p_{12}', |p_{3}'\hat{p}_{3}' + r \vec{q}_{\pi}|) \psi_{^{13}S_{1}}(p_{12}', p_{3}') \right|^{2} dp_{13}' p_{3}'^{2} \int d(\cos(\theta_{p_{3}'}) \times \psi_{^{13}S_{1}}(p_{12}', |p_{3}'\hat{p}_{3}' + r \vec{q}_{\pi}|) \psi_{^{13}S_{1}}(p_{12}', p_{3}') \right|^{2} dp_{13}' p_{3}'^{2} \int d(\cos(\theta_{p_{3}'}) \times \psi_{^{13}S_{1}}(p_{12}', |p_{3}'\hat{p}_{3}' + r \vec{q}_{\pi}|) \psi_{^{13}S_{1}}(p_{12}', p_{3}') \right|^{2} dp_{13}' p_{3}'^{2} \int d(\cos(\theta_{p_{3}'}) \times \psi_{^{13}S_{1}}(p_{12}', |p_{3}'\hat{p}_{3}' + r \vec{q}_{\pi}|) \psi_{^{13}S_{1}}(p_{12}', p_{3}') dp_{13}' p_{13}' p_{13$$

Decay rate for ${}^3_{\Lambda}H \rightarrow {}^3He + \pi^ \frac{q_{\pi}}{FE_{\pi}} \sum_{\substack{m_{3} \in M \\ M_{3} \in M}} \sum_{m_{3} \in M} \left| \langle \psi_{3}_{He} \phi_{\pi} | \hat{O} | \psi_{3}_{A} \rangle \right|^{2}$ ³H ³He р р n n р $q_{\pi} = 114.4 \text{ MeV}$ $E_{\pi} = 170.3 \text{ MeV}$

We can approximate to only $d+\Lambda$ and d+p main amplitudes $t_{12}=l_{12}=0, s_{12}=1, l_{3}=0$

$\Psi_{^{3}\text{He}}$ and $\Psi_{^{3}_{\Lambda}\text{H}}$ with ab initio no core shell model:

Quasi-exact method to solve the A-be eigenvalue problem:

 $\left[\sum_{i \le A} \frac{\hat{p}_i^2}{2m_i} + \sum_{i < j \le A-1} \hat{V}_{NN;ij} + \sum_{i < j < k \le A-1} \hat{V}_{NNN;ijk} + \sum_{a < j = A} \hat{V}_{NY;ij}\right]$

$$\psi = E \psi$$

 \bigstar All particles are active (no rigid core)

★Exact Pauli principle

★ Realistic baryon-baryon interactions

 \bigstar Controllable approximations

$\Psi_{^{3}He}$ and $\Psi_{^{3}_{\Lambda}H}$ with ab initio no core shell model:

Quasi-exact method to solve the A-be eigenvalue problem:

$$\left[\sum_{i \le A} \frac{\hat{p}_i^2}{2m_i} + \sum_{i < j \le A-1} \hat{V}_{NN;ij} + \sum_{i < j < k \le A-1} \hat{V}_{NNN;ijk} + \sum_{a < j = A} \hat{V}_{NY;ij}\right] \psi = E \psi$$

• Diagonalize in A-particle H.O. basis with frequency ω and N_{max} states

$$\psi(r_1, \cdots, r_A) = \sum_{n \le N_{max}} \phi_n^{HO}(r_1, \cdots, r_2)$$

 \bigstar All particles are active (no rigid core)

★Exact Pauli principle

Realistic baryon-baryon interactions

 \star Controllable approximations

$\Psi_{^{3}\text{He}}$ and $\Psi_{^{3}_{\Lambda}\text{H}}$ with ab initio no core shell model:

Quasi-exact method to solve the A-be eigenvalue problem:

$$\left[\sum_{i \le A} \frac{\hat{p}_i^2}{2m_i} + \sum_{i < j \le A-1} \hat{V}_{NN;ij} + \sum_{i < j < k \le A-1} \hat{V}_{NN;ijk} + \sum_{a < j = A} \hat{V}_{NY;ij}\right] \psi = E \psi$$

- Diagonalize in A-particle H.O. basis with frequency ω and N_{max} states

$$\psi(r_1, \cdots, r_A) = \sum_{n \le N_{max}} \phi_n^{HO}(r_1, \cdots, r_2)$$

Relative Jacobi coordinates

$$\vec{p}_{12} = \left(m_2 \, \vec{p}_1 - m_1 \, \vec{p}_2 \right) / (m_1 + m_2),$$

$$\vec{p}_3 = \left[m_3 (\vec{p}_1 + \vec{p}_2) - (m_1 + m_2) \, \vec{p}_3 \right] / (m_1 + m_2 + m_3).$$

Basis states $|n_{12}(l_{12}s_{12})j_{12}t_{12}, n_3(l_3s_3)I_3t_3\rangle$

 \bigstar All particles are active (no rigid core)

★Exact Pauli principle

★ Realistic baryon-baryon interactions

 \bigstar Controllable approximations

$\Psi_{^{3}\text{He}}$ and $\Psi_{^{3}\text{H}}$ with ab initio no core shell model:

Quasi-exact method to solve the A-b eigenvalue problem:

$$\left[\sum_{i \le A} \frac{\hat{p}_i^2}{2m_i} + \sum_{i < j \le A-1} \hat{V}_{NN;ij} + \sum_{i < j < k \le A-1} \hat{V}_{NNN;ijk} + \sum_{a < j = A} \hat{V}_N \right]$$

 Diagonalize in A-particle H.O. basis with frequency ω and N_{max} states

$$\psi(r_1, \cdots, r_A) = \sum_{n \le N_{max}} \phi_n^{HO}(r_1, \cdots, r_2)$$

Relative Jacobi coordinates

$$\vec{p}_{12} = \left(m_2 \, \vec{p}_1 - m_1 \, \vec{p}_2 \right) / (m_1 + m_2),$$

$$\vec{p}_3 = \left[m_3 (\vec{p}_1 + \vec{p}_2) - (m_1 + m_2) \, \vec{p}_3 \right] / (m_1 + m_2 + m_3).$$

Basis states $|n_{12}(l_{12}s_{12})j_{12}t_{12}, n_3(l_3s_3)I_3t_3\rangle$

$$\left[\psi\right] \psi = E \psi$$

 \bigstar All particles are active (no rigid core) **★**Exact Pauli principle **Realistic baryon-baryon interactions** ★ Controllable approximations

- Effective field theory potentials (long range part by $\chi_{PT} \pi$, K, η exchanges + parametrized short range)
 - EFT NNLO_{sim} NN+NNN [Carlsson et al., PRX 6, 011019 (2016)]
 - EFT LO NY (incl. $\Lambda N < > \Sigma N$) [Polinder et al., NPA 779, 244 (2006)]

- \Rightarrow E(³He) = -7.723 MeV (NNLO_{sim}) (exp. -7.718(19) MeV)

³He (and ²H) wave function

→ 10⁻³ MeV accuracy for N_{max} ~ 30 and a wide range of frequencies ω

³_AH wave function

- → UV convergence for $\Lambda_{UV} > 1$ GeV a
- → 10⁻³ MeV accuracy for $N_{max} \sim 70$

• ω and N_{max} introduce UV and IR cutoffs. For ${}^{3}_{\Lambda}$ H, fix UV cutoff Λ_{UV} , extrapolate in effective IR length L_{eff}

$$E^{UV}(L_{eff}) = E_{\infty} + a_0 e^{-a_1 L_{eff}}$$

Wendt et al., PRC 91, 061301 (2015) Furnstahl et al., PRC 86, 031301 (2012)

- π^{-} nucleus interaction influences emitted π^{-}
 - \rightarrow Understood in terms of π^2 nucleus optical potentials constrained by π^{-} - atom level shifts and widths from Ne to U
 - \Rightarrow Supplemented by πN and πA scattering to extrapolate from near-threshold to q = 114.4 MeV in our π^2 - ³He system
- Interplay of s- and p-wave parts of the optical potential produces attractive π⁻ FSI

ϕ_{π} distorted wave

- π^{-} nucleus interaction influences emitted π^{-}
 - \rightarrow Understood in terms of π^2 nucleus optical potentials constrained by π^{-} - atom level shifts and widths from Ne to U
 - \Rightarrow Supplemented by πN and πA scattering to extrapolate from near-threshold to q = 114.4 MeV in our π^2 - ³He system
- Interplay of s- and p-wave parts of the optical potential produces attractive π - FSI

π - FSI increase rate ~15%

ϕ_{π} distorted wave

Possible weak transitions $\Lambda/\Sigma \rightarrow N + \pi^{-1}$

• $\Lambda -> p + \pi^{-}$

- Σ⁻ -> n + π⁻
- Σ⁰ −> p + π⁻
- * $|M_{\Sigma}|^{2} \sim 0.4\%$ $\Gamma \sim |M_{\Sigma} + M_{\Lambda}|^{2}$

• $\Lambda -> p + \pi^{-}$

$$\hat{O}_{\Lambda} = i\sqrt{2}G_F m_{\pi}^2 \left(A_{\Lambda} + \frac{B_{\Lambda}}{2\overline{M}_{\Lambda N}}\vec{\sigma}\cdot\vec{q}_{\pi}\right)\hat{O}_{t_1}$$

 \Rightarrow A_A=1.024, B_A=-9.431 fixed by $T_{\Lambda}=263$ ps and $\Gamma_{PC}/\Gamma_{PV}=0.203$

M. Ablikim, et al., BESIII Collaboration, Nat. Phys. 15 (2019) 631

Possible weak transitions $\Lambda/\Sigma \rightarrow N + \pi^{-1}$

* | M_Σ |² ~ 0.4% $\Gamma \sim |M_{\Sigma} + M_{\Lambda}|^2$

• $\Lambda -> p + \pi^{-}$

$$\hat{O}_{\Lambda} = i\sqrt{2}G_F m_{\pi}^2 \left(A_{\Lambda} + \frac{B_{\Lambda}}{2\overline{M}_{\Lambda N}}\vec{\sigma} \cdot \vec{q}_{\pi}\right) \hat{O}_{t_{12}=0}$$

 \Rightarrow A_A=1.024, B_A=-9.431 fixed by $\tau_{\Lambda}=263$ ps and $\Gamma_{PC}/\Gamma_{PV}=0.203$

M. Ablikim, et al., BESIII Collaboration, Nat. Phys. 15 (2019) 631

Possible weak transitions $\Lambda/\Sigma \rightarrow N + \pi^{-1}$

•
$$\Sigma^{-} \rightarrow n + \pi^{-}$$

• $\Sigma^{0} \rightarrow p + \pi^{-}$
* $|M_{\Sigma}|^{2} \sim 0.4\%$
 $\Gamma^{-}|M_{\Sigma} + M_{\Lambda}|^{2}$

$$\hat{O}_{\Sigma} = iG_F m_{\pi}^2 \left(\frac{\sqrt{2}}{3}A_{\Sigma^-} + \frac{1}{3}A_{\Sigma^0}\right) \hat{O}_{t_{12}=1}$$

 \blacksquare Neglect B_{Σ} and A_{Σ}-=1.364 fixed by τ_{Σ} -=147.9 ps and chiral A_{$\Sigma 0$}=A_{Σ}-/ sqrt(2)

• $\Lambda -> p + \pi^{-}$

$$\hat{O}_{\Lambda} = i\sqrt{2}G_F m_{\pi}^2 \left(A_{\Lambda} + \frac{B_{\Lambda}}{2\overline{M}_{\Lambda N}}\vec{\sigma} \cdot \vec{q}_{\pi}\right) \hat{O}_{t_{12}=0}$$

 \Rightarrow A_A=1.024, B_A=-9.431 fixed by $\tau_{\Lambda}=263$ ps and $\Gamma_{PC}/\Gamma_{PV}=0.203$

M. Ablikim, et al., BESIII Collaboration, Nat. Phys. 15 (2019) 631

Possible weak transitions $\Lambda/\Sigma \rightarrow N + \pi^{-1}$

•
$$\Sigma^{-} \rightarrow n + \pi^{-}$$

• $\Sigma^{0} \rightarrow p + \pi^{-}$
* $|M_{\Sigma}|^{2} \sim 0.4\%$
 $\Gamma^{-}|M_{\Sigma} + M_{\Lambda}|^{2}$

$$\hat{O}_{\Sigma} = iG_F m_{\pi}^2 \left(\frac{\sqrt{2}}{3}A_{\Sigma^-} + \frac{1}{3}A_{\Sigma^0}\right) \hat{O}_{t_{12}=1}$$

 \blacksquare Neglect B_{Σ} and A_{Σ}-=1.364 fixed by τ_{Σ} -=147.9 ps and chiral A_{$\Sigma 0$}=A_{Σ}-/ sqrt(2)

Σ contributions decrease rate ~10%

Extrapolated decay rate for ${}^3_{\Lambda}H \rightarrow {}^3He + \pi^$ for $\Lambda_{UV} = 1$ GeV (in GHz)

$P(^{3}\text{He}) P_{\Lambda}(^{3}_{\Lambda}\text{H}) P_{\Sigma}(^{3}_{\Lambda}\text{H}) \Gamma^{\text{UV}}_{\text{PW}}$ approx. 46.81 95.87 1.141

Extrapolated decay rate for $^3_{\Lambda}H \rightarrow {}^3He + \pi^$ for $\Lambda_{UV} = 1$ GeV (in GHz)

$\begin{array}{c|c} P(^{3}\text{He}) & P_{\Lambda}(^{3}_{\Lambda}\text{H}) \\ \text{approx.} & 46.81 & 95.87 \\ \Lambda & 100 & 99.61 \end{array}$

Extrapolated decay rate for ${}^3_{\Lambda}H \rightarrow {}^3He + \pi^$ for $\Lambda_{UV} = 1$ GeV (in GHz)

Extrapolated decay rate for ${}^3_{\Lambda}H \rightarrow {}^3He + \pi^$ for $\Lambda_{UV} = 1$ GeV (in GHz)

<u>Two-body decay rates for different Λ_{UV} are correlated with B_{Λ} </u>

$$E^{UV}(L_{eff}) = E_{\infty} + a_0 e^{-a_1 L_{eff}}$$

<u>Two-body decay rates for different Λ_{UV} are correlated with B_{Λ} </u>

$$E^{UV}(L_{eff}) = E_{\infty} + a_0 e^{-a_1 L_{eff}}$$

Corresponding lifetimes and relation to B_A

Λ _{UV} (MeV)	B∧ (KeV)	Г (GHz)
800	69	0,975
900	135	1,197
1000	159	1,265

Two-body decay rates for different Λ_{UV} are correlated with B_{Λ}

$$E^{UV}(L_{eff}) = E_{\infty} + a_0 e^{-a_1 L_{eff}}$$

<u>Corresponding lifetimes and relation to B_{Λ} </u>

Λυν (MeV)	B∧ (KeV)	Г (GHz)
800	69	0,975
900	135	1,197
1000	159	1,265
	410	1,403

• From partial decay rate to lifetime • $R_3 = \frac{\Gamma(^3_{\Lambda}H \rightarrow {}^3He + \pi^-)}{\Gamma_{\pi^-}(^3_{\Lambda}H)} = 0.35 \pm 0.04$

• From partial decay rate to lifetime • $R_3 = \frac{\Gamma(^3_{\Lambda}H \rightarrow {}^3He + \pi^-)}{\Gamma_{\pi^-}(^3_{\Lambda}H)} = 0.35 \pm 0.04$

- Many body methods
 - More precise than input hamiltonians

• From partial decay rate to lifetime • $R_3 = \frac{\Gamma(^3_{\Lambda}H \to {}^3\text{He} + \pi^-)}{\Gamma_{\pi^-}(^3_{\Lambda}H)} = 0.35 \pm 0.04$

- Nuclear forces:
 - Poor NY data and potentials

 $\Lambda_{YN} \in (550, 700) \text{ M}eV$

➡ NNLOsim family of 42 Hamiltonians: $T_{NN}^{lab,max} \le 125, 158, 191, 224, 257, 290 \text{ M}eV$ $\Lambda_{EFT} = 450, 475, 500, 525, 550, 575, 600 MeV$

- Many body methods
 - More precise than input hamiltonians

• From partial decay rate to lifetime • $R_3 = \frac{\Gamma(^3_{\Lambda}H \rightarrow {}^3He + \pi^-)}{\Gamma_{\pi^-}(^3_{\Lambda}H)} = 0.35 \pm 0.04$

- Nuclear forces:
 - Poor NY data and potentials

 $\Lambda_{YN} \in (550, 700) \text{ MeV}$

➡ NNLOsim family of 42 Hamiltonians: $T_{NN}^{lab,max} \leq 125, 158, 191, 224, 257, 290 \quad \text{MeV}$ $\Lambda_{EFT} = 450, 475, 500, 525, 550, 575, 600 \quad \text{MeV}$

- Many body methods
 - More precise than input hamiltonians

→ New microscopic $\Gamma(^{3}H - > \pi^{-} + ^{3}He)$ computation

<u>Summary</u>

→ New microscopic $\Gamma(^{3}H - > \pi^{-} + ^{3}He)$ computation

- Inclusion of π distortion increases rate ~15%
- Small Σ contribution decreases rate ~10%
- Strong dependence on B_A

<u>Summary</u>

\blacksquare New microscopic $\Gamma(^{3}H - > \pi^{-} + {}^{3}He)$ computation

- Inclusion of π distortion increases rate ~15% Deduced lifetimes correlate with ALICE, Small Σ contribution decreases rate ~10% HypHI, and STAR results, each with Strong dependence on B_A different B_{Λ}

Summary

Many thanks to my collaborators

Daniel Gazda

Nuclear physics Institute Rez, Prague, Czech Republic

Avraham Gal, Eli Friedman The Hebrew University of Jerusalem Israel

