Martin Schäfer

Racah Institute of Physics, The Hebrew University, Jerusalem, Israel

B. Bazak, N. Barnea, J. Mareš, A. Gal

STARNU : Hot Topics in STRAngeness and NUclear Atomic Physics 24-28 May 2021 (Virtual)

Why s-shell hypernuclei ?

What we have ?

 experimentaly observed more than 30 Λ-hypernuclei and three well-established ΛΛ-hypernuclei (emulsion experiments)
 → available experimental B_Λ separation energies
 →rather precise spectroscopic Λ-hypernucear data

(for p-shell hypernuclei extremely precise)

on the other hand ...

- scarce ΛN scattering data
 - \rightarrow large theoretical model dependencies
- femtoscopy

s-shell hypernuclei

- precise B_{Λ} separation energies $B_{\Lambda}(^{A}_{\Lambda}X) = B(^{A}_{\Lambda}X) B(^{A-1}_{\Lambda}X)$
- few-body character of these systems makes easier to track effects of underlying hyperon-nucleon(s) interactions
- ${}_{\Lambda}^{5}$ He overbinding problem, $\Lambda N \Sigma N$ mixing, charge symmetry breaking
- discussed Ann, ${}^3_{\Lambda}H^*$, AAn, AAnn
- question of bound $^5_{\Lambda\Lambda}{\rm He}$ (J-PARC P75 proposal) and $^4_{\Lambda\Lambda}{\rm H}(1^+)$

YN scattering data

- ullet cross-section datapoints for $p_{
 m lab}\gtrsim 100$ MeV
 - 12 d.p. for $\Lambda + p \rightarrow \Lambda + p$
 - 22 d.p. for $\Sigma^- + p \rightarrow \Lambda + n$, $\Sigma^+ + p \rightarrow \Sigma^+ + p$, $\Sigma^- + p \rightarrow \Sigma^- + p$, and $\Sigma^- + p \rightarrow \Sigma^0 + n$
- no information regarding spin-depence

• Alexander et al. (PR173, 1452, 1968) $a_{\Lambda N}({}^{1}S_{0})$ =-1.8 fm $a_{\Lambda N}({}^{3}S_{1})$ =-1.6 fm

• Sechi-Zorn et al. (PR175, 1735, 1968) $0 > a_{\Lambda N}({}^{1}S_{0}) > -9.0 \text{ fm}$ $-0.8 > a_{\Lambda N}({}^{3}S_{1}) > -3.2 \text{ fm}$

Fig. 9. Mapping of the likelihood function L in the a_s-q_s plane for the four-parameter fit. The shaded area includes all points with likelihood values above $L_{max}(\exp 0.5)$ where L_{max} is the value of the best fit (point f). The external smooth curve encloses likelihood values plying above $L_{max}(\exp 0.5)$. Points 1–5 represent scattering lengths derived from early hypernuclei calculations.

Hypernucler trios $^3_{\Lambda}H$, $^3_{\Lambda}H^*$, Λnn - physical motivation

 $^3_{\Lambda}{
m H}$

- lightest bound hypernucleus with 1/2⁺ spin-parity g.s.
 - \rightarrow established from hypertriton weak-decay measurements

$$\begin{split} R_3 &= \frac{\Gamma_{\Lambda}^{(3}\,\mathrm{H} \to \pi^{-} + {}^{3}\mathrm{He})}{\Gamma_{\pi^{-}}({}^{3}_{\Lambda}\mathrm{H})} = 0.35 \pm 0.04 \\ \text{(G. Keyes et al., NPB67, 269, 1973)} \end{split}$$

 $J^{\pi} = 1/2^+$ requires R_3 about 0.4 $J^{\pi} = 3/2^+$ requires R_3 about 0.1 (Bertrand et al., NPB16, 77, 1970)

Experimental status of $B_{\Lambda}(^{3}_{\Lambda}H)$

Emulsion experiments :

- $B_{\Lambda}(^{3}_{\Lambda}\mathrm{H})$ extracted from 4 different sets of data
- widely accepted value $B_{\Lambda}^{\text{EMUL}}(_{\Lambda}^{\text{A}}\text{H}) = 0.13 \pm 0.05 \text{ MeV}$ (M. Jurić et al., NPB52, 1, 1973)

STAR Collaboration measurement :

- HI collisions (Au+Au $@\sqrt{s_{NN}} = 200 \text{ GeV})$
- B^{STAR}_Λ(³_ΛH) = 0.41 ± 0.12(stat.) ± 0.11(syst.) MeV (STAR Collaboration, Nat. Phys. 16, 409, 2020)

+ Hypertriton lifetime constraints :

• $B_{\Lambda}(^{3}_{\Lambda}H) \lesssim 0.1 \text{ MeV} (ALICE); B_{\Lambda}(^{3}_{\Lambda}H) \gtrsim 0.2 \text{ MeV} (STAR)$ (A. Pérez-Obiol et al., PLB811, 135916, 2020)

$B_{\Lambda}(^{3}_{\Lambda}\mathrm{H})$ as a constraint in YN interaction models

Hypertriton serves as a highly important constraint in YN models !!

(Alexander et al., PR173, 1452, 1968; Y. Fujiwara et al., PRC77, 027001, 2008; H. Garcilazo et al. PRC75, 034002, 2007; A. Nogga, NPA914, 140, 2013; H. Le et al., PLB801, 135189, 2020)

Hypernucler trios $^3_{\Lambda}H,~^3_{\Lambda}H^*,~\Lambda nn$ - physical motivation

$^3_{\Lambda}\mathrm{H}(1/2^+)$

- lightest bound hypernucleus
- currently no experimental consensus on its B_{Λ}
- constraint in ΛN interaction models

$^3_{\Lambda}\mathrm{H}^*(3/2^+)$

- no experimental evidence
- strict constraint on $\Lambda N S = 1$ interaction
- JLab C12-19-002 proposal

$\Lambda nn(1/2^+)$

- experiment (HypHI)
- JLab E12-17-003 experiment
- valuable source of Λn interaction
- structure of neutron-rich Λ-hypernuclei

Single- Λ LO \neq EFT - basic idea

(L. Contessi, N. Barnea, and A. Gal, Phys. Rev. Lett. 121, 102502, 2018)

Introduced in more detail in Nir's talk.

Few-body techniques

Bound states :

• Stochastic Variational Method with correlated Gaussian basis (SVM)

Continuum :

- resonances, virtual states
- two indpendent methods
 - \rightarrow Inverse Analytic Continuation in the Coupling Constant (IACCC)
 - \rightarrow Complex Scaling Method (CSM)

 \rightarrow for more details on hyper(nuclear) $\# {\sf EFT}$ and application of aforementioned few-body techniques see previous work

- (L. Contessi, N. Barnea, A. Gal, PRL121, 102502, 2018)
- (M. Schäfer, B. Bazak, N. Barnea, J. Mareš, PLB808, 135614, 2020)
- (M. Schäfer, B. Bazak, N. Barnea, J. Mareš, PRC103, 025204, 2021)

Evolution of Λnn and $^3_\Lambda H^*$ pole with 3-body force

Hamiltonian of Λnn and ${}^{3}_{\Lambda} H^{*}$ systems: $H = \overbrace{\mathcal{T}_{k} + V_{2} + V_{3}}^{H^{phys}} + V_{3}^{aux}$

$$\begin{split} V_3 &= D_{\lambda}^{lS} \sum_{i < j < k} \mathcal{Q}_{ijk}^{lS} \sum_{\text{cyc}} e^{-\frac{\lambda^2}{4} (r_{ij}^2 + r_{jk}^2)} \\ V_3^{\text{aux}} &= \delta_{\lambda}^{lS} \sum_{i < j < k} \mathcal{Q}_{ijk}^{lS} \sum_{\text{cyc}} e^{-\frac{\lambda^2}{4} (r_{ij}^2 + r_{jk}^2)} \end{split}$$

Three important points $(\lambda >> 2m_{\pi})$:

- 2. Just bound Ann or ${}^{3}_{\Lambda} H^{*} \qquad \delta^{IS}_{\lambda} / D^{IS}_{\lambda} = ?$ \rightarrow implications to 4 and 5-body s-shell hypernuclei (strongly overbound)
- **3. Physical Hamiltonian** $\rightarrow \text{zero } V_3^{\text{aux}} \text{ force}$ $\rightarrow \Lambda \text{nn, } {}^{\Lambda}_{\lambda} \text{H}^* \text{ resonances, virtual states } ?$

Resonance in Λnn system

• Λnn resonance pole moves with increasing cut-off towards physical Riemann sheet

Excited state of hypertriton $^{3}_{\Lambda}$ H*

Excited state of hypertriton $^{3}_{\Lambda}H^{*}$ as a virtual state

- ${}^3_{\Lambda} H^*$ virtual state solution for all considered cut-offs and scattering lengths
- convergence of $^3_\Lambda \mathrm{H}^*$ virtual state pole with increasing cut-off
- $\bullet\,$ at LO <code>#EFT</code> there is a virtual state lying from 0.02 up to 0.25 MeV near the $^2{\rm H}+\Lambda$ threshold

Implications of increased $B_{\Lambda}(^{3}_{\Lambda}H)$

What we want to know ?

- consistency of increased $B_{\Lambda}(^{3}_{\Lambda}H)$ with respect to experimentally measured properties of 4, 5, and higher-body hypernuclei
- so far not experimentally observed Λnn or ${}^{3}_{\Lambda}H^{*}({}^{3+}_{2})$ systems

H. Le et al. (PLB801, 135189, 2020)

- \rightarrow 3 version of $\chi EFT(NLO)$ interaction (A,B,C) each constrained by $B_{\Lambda}^{STAR}(^{3}_{\Lambda}H)$ \rightarrow study of $^{4}_{\Lambda}He$ and $^{7}_{\Lambda}Li$
- \rightarrow larger $a_{\Lambda N}^0$, smaller $a_{\Lambda N}^1$
- \rightarrow no principle reason against larger $B_{\Lambda}(^{3}_{\Lambda}H)$!

In this work (preliminary) :

- → large range of ΛN scattering lengths → $B_{\Lambda}^{\rm STAR}(^{3}_{\Lambda}{\rm H})$ and $B_{\Lambda}^{\rm EMUL}(^{3}_{\Lambda}{\rm H})$
- \rightarrow implications to $^5_{\Lambda}{\rm He},$ $\Lambda{\rm nn},$ and $^3_{\Lambda}{\rm H}^*$

Preliminary

$^{5}_{\Lambda}\mathrm{He}$

shaded areas - propagated exp. errors in $B_{\Lambda}(^{3}_{\Lambda}H)$, $B_{\Lambda}(^{4}_{\Lambda}H;0^{+})$, and $E_{ex}(^{4}_{\Lambda}H;1^{+})$ constraints

(Preliminary results - not fully converged $B_{\Lambda}(^{5}_{\Lambda} \text{He})$ for $\lambda \geq 7 \text{ fm}^{-1}$)

 \rightarrow both $B^{\rm STAR}_{\Lambda}(^{3}_{\Lambda}{\rm H})$ and $B^{\rm EMUL}_{\Lambda}(^{3}_{\Lambda}{\rm H})$ are acceptable with LO #EFT accuracy

Preliminary

$^{5}_{\Lambda}\mathrm{He}$

 \rightarrow at LO #EFT the relative difference $|\Delta(^{5}_{\Lambda}He)| = \left|\frac{B_{\Lambda}(^{5}_{\Lambda}He)|_{\rm EMUL} - B_{\Lambda}(^{5}_{\Lambda}He)|_{\rm STAR}}{B_{\Lambda}(^{5}_{\Lambda}He)|_{\rm EMUL}}\right| \leq 12\%$ for all considered sets of ΛN scattering lengths and values of λ

Ann $(J^{\pi} = 1/2^+; I = 1)$ resonance

- full symbols $B_{\Lambda}^{\text{EMUL}}(^{3}_{\Lambda}\text{H}) = 0.13(5) \text{ MeV}$
- empty symbols $B_{\Lambda}^{\text{STAR}}(^{3}_{\Lambda}\text{H}) = 0.41(12) \text{ MeV}$

- \rightarrow increasing $B_{\Lambda}(^{3}_{\Lambda}H)$ shifts Λnn resonance pole towards the third quadrant
- $ightarrow B_{\Lambda}(^{3}_{\Lambda}H)$ experimental error yields considerable uncertainty in $E_{\Lambda nn}$ prediction

$$\overline{f}_{\Lambda \mathrm{nn}} = -2\mathrm{Im}(E_{\Lambda \mathrm{nn}}) \geq 0.8 \; \mathsf{MeV}$$

Preliminary

Excited state of the hypertriton $^3_{\Lambda}{ m H}^*$ ($J^{\pi}=3/2^+;I=0$)

error bars - propagated exp. errors in $B_{\Lambda}(^{4}_{\Lambda}H; 0^{+})$ and $B_{\Lambda}(^{4}_{\Lambda}H; 1^{+})$ constraints shaded areas - same as above plus exp. error in $B_{\Lambda}(^{3}_{\Lambda}H)$ constraint

 \rightarrow increasing $B_{\Lambda}(^{3}_{\Lambda}H)$ moves $^{3}_{\Lambda}H^{*}$ virtual state pole closer to the Λd threshold or into the bound state region

Λd scattering

$$\sigma_{\Lambda d}^{k_{\Lambda d}=0} = 4\pi \left[\frac{1}{3} A_{\Lambda d}^2(1/2^+) + \frac{2}{3} A_{\Lambda d}^2(3/2^+) \right] \simeq 4\pi \left[\frac{1}{3} \frac{1}{2\mu_{\Lambda d} B_{\Lambda}(^3_{\Lambda}\mathrm{H}; 1/2^+)} + \frac{2}{3} \frac{1}{\mathrm{Im}(\gamma_{3/2})^2} \right]$$

Two-body Λd momentum correlation function $C^{\Lambda d}(k)$

• recently, pointed out that $C^{\Lambda d}(k)$ should be considered to study Λd and underlying ΛN interaction (J. Haidenbauer, PRC102, 034001, 2020)

 \rightarrow LL model; $C(k) \simeq C(A, r, R; k)$ (R. Lednicky, V. L Lyuboshitz, SJNP770, 35, 1982)

predicted $A_{\Lambda d}(1/2^+)$, $A_{\Lambda d}(3/2^+) + r_{\Lambda d}(1/2^+) = 3 \text{ fm and } r_{\Lambda d}(3/2^+) = 4 \text{ fm}$, R = 5 fm

Conclusions

- comprehensive study of the $^5_{\Lambda}{
 m He}$, Λnn , and $^3_{\Lambda}{
 m H}^*$ systems within LO ${\rm \#EFT}$
 - \rightarrow various $a_{\Lambda N}$ sets, $B_{\Lambda}^{\mathrm{EMUL}}(^{3}_{\Lambda}\mathrm{H}) = 0.13(5)$ MeV and $B_{\Lambda}^{\mathrm{STAR}}(^{3}_{\Lambda}\mathrm{H}) = 0.41(12)$ MeV

At LO \neq EFT both $B_{\Lambda}^{\text{EMUL}}(^{3}_{\Lambda}\text{H})$ and $B_{\Lambda}^{\text{STAR}}(^{3}_{\Lambda}\text{H})$ are consistent with $B_{\Lambda}^{\exp}(^{5}_{\Lambda}\text{He}) = 3.12(2)$ MeV.

$\Lambda nn(\frac{1}{2}^+)$ - resonant state

increasing B_Λ(³_ΛH) shifts Λnn resonance pole towards the third quadrant of the complex energy plane (Re(E) < 0, Im(E) < 0); Γ_{Λnn} ≥ 0.8 MeV

$^3_{\Lambda}H^*(\frac{3}{2}^+)$ - virtual state

- increasing B_Λ(³_ΛH) pushes ³_ΛH^{*} virtual state pole closer to the Λd threshold or into the bound state region
- pole position sensitive to increase of the ΛN spin-singlet strength at the expense of the ΛN spin-triplet channel (measurement of C^{Λd}(k) is desirable)