$\Xi^- p \rightarrow \Lambda \Lambda$ in light emulsion nuclei constraining the Ξ -nuclear potential STRANU Workshop, ECT*, May 2021 Avraham Gal Racah Inst. Phys., Hebrew University, Jerusalem, Israel based on E. Friedman, A, Gal, arXiv:2104.00421

Abstract: All five KEK & J-PARC two-body $\Xi^- + {}^{A}Z \rightarrow {}^{A'}_{\Lambda}Z' + {}^{A''}_{\Lambda}Z''$ capture events in light emulsion nuclei are considered, confirming that they occur from Coulomb-assisted $1p_{\Xi^-}$ nuclear states. The underlying Ξ -nuclear potential is strongly attractive, with nuclear-matter depth V_{Ξ} larger than 20 MeV.

Ξ⁻ brief overview mostly experimental

 $^{12}C(K^-,K^+)$ counter experiments, end of 1990s. Unresolved bound states, if any, V_{Ξ} of order 15 MeV

BNL AGS-906 on ⁹Be claiming a stable ${}^{4}_{\Lambda\Lambda}$ H. QF calculation, Harada-Hirabayashi (PRC 2021), concludes V₂=17±6 MeV. Yet, no Ξ^{-} bound state smoking gun from (K⁻, K⁺) experiments. Await J-PARC final E05 & future E70 results.

ΞN s-wave model interactions

 Hiyama et al. PRL 124 (2020) 092501: A \leq 4 Ξ hypernuclei

 Substantial model dependence

 HAL-QCD: LQCD calculation at $m_{\pi(K)}=146(525)$ MeV

 Sasaki et al. NPA 998 (2020) 121737

 Inoue et al. AIPCP 2130 (2019) 020002: $V_{\Xi}^{LQCD}=4\pm 2$ MeV

attractive HAL-QCD – yes, repulsive Nijmegen ESC16 – no

(K⁻, K⁺) in light emulsion nuclei Ξ^- stopped and captured

- Nagara event, ${}_{\Lambda\Lambda}{}^{6}$ He, (KEK-E373) PRL 87 (2001) 212502 $B_{\Lambda\Lambda}({}_{\Lambda\Lambda}{}^{6}$ He)=6.91±0.16 MeV unambiguously determined.
 - A: Ξ^- atomic capture $\Xi^-_{3D} + {}^{12}C \to {}^{6}_{\Lambda\Lambda}He + t + \alpha$
 - B: weak decay ${}_{\Lambda\Lambda}{}^{6}\text{He} \rightarrow {}_{\Lambda}{}^{5}\text{He} + p + \pi^{-}$
 - C: ${}_{\Lambda}^{5}$ He nonmesonic weak decay to 2 Z=1 recoils + n.

Twin Λ : capture & decay vertices

Include IBUKI (J-PARC E07) PRL 126 (2021) 062501

- A: capture $\Xi_{1p}^- + {}^{14}\mathbf{N} \to {}^{5}_{\Lambda}\mathbf{He} + {}^{10}_{\Lambda}\mathbf{Be}$
- B: decay ${}_{\Lambda}^{5}\text{He} \rightarrow {}^{4}\text{He} + p + \pi^{-}$
- C: decay ${}^{10}_{\Lambda}\mathrm{Be} \rightarrow 3 \text{ or } 4 \text{ nuclei} + \text{neutrons}$

Exclude KINKA (KEK E373) arXiv:2103.08793

- A: capture $\Xi_{1s}^- + {}^{14}\mathbf{N} \rightarrow {}^9_{\Lambda}\mathbf{Be} + {}^5_{\Lambda}\mathbf{He} + \mathbf{n}$
- B: decay ${}^9_{\Lambda}\text{Be} \rightarrow {}^6\text{He} + 2p + n$
- C: decay ${}_{\Lambda}^{5}\text{He} \rightarrow 2$ nuclei + neutrons Furthermore, $\mathbf{1s}_{\Xi^{-}}$ capture rate is only a few % of $\mathbf{1p}_{\Xi^{-}}$ capture rate

Two-body Ξ^- capture emulsion events

Experiment	Event	^{A}Z	$^{A'}_{\Lambda} \mathbf{Z'} + ^{A''}_{\Lambda} \mathbf{Z''}$	$B_{\Xi^{-}}$ (MeV)
KEK E176	10-09-06	$^{12}\mathbf{C}$	${}^4_\Lambda {f H} + {}^9_\Lambda {f Be}$	$0.82{\pm}0.17$
KEK E176	13-11-14	$^{12}\mathbf{C}$	${}^4_\Lambda \mathbf{H} + {}^9_\Lambda \mathbf{Be}^*$	$0.82{\pm}0.14$
KEK E176	14-03-35	$^{14}\mathbf{N}$	$^3_\Lambda\mathrm{H}+^{12}_\Lambda\mathrm{B}$	$1.18{\pm}0.22$
KEK E373	KISO	$^{14}\mathbf{N}$	$^{5}_{\Lambda}\mathrm{He}+^{10}_{~\Lambda}\mathrm{Be}^{*}$	$1.03{\pm}0.18$
J-PARC E07	IBUKI	$^{14}\mathbf{N}$	$^{5}_{\Lambda}\mathrm{He}+^{10}_{\Lambda}\mathrm{Be}$	$1.27{\pm}0.21$

- Ξ^- capture occurs mostly from 3D atomic state ($B_{\Xi^-} = 126, 175 \text{ keV in } {}^{12}\text{C}, {}^{14}\text{N}$, respectively).
- To form $1s_{\Lambda}^2$ in $\Xi^- p \to \Lambda\Lambda$ need $l_{\Xi^-} = l_p$, hence expect capture from a Coulomb-assisted $1p_{\Xi^-}$ nuclear state bound by ~1 MeV, evolving thru Strong Interaction from a 2P atomic state.

 ${
m B}_{1p}^{\Xi^-}({
m calc.}){=}2.08{\pm}0.28~{
m vs.}~{
m B}_{1p}^{\Xi^-}({
m exp.}){=}1.15{\pm}0.20~{
m MeV}$

 $^{14}N_{g.s.}(1^+)$ split by shell-model residual interaction $\mathbf{F}_{\Xi N}^{(2)} \ \mathbf{Q}_N \cdot \mathbf{Q}_\Xi \qquad \mathbf{Q} = \sqrt{\frac{4\pi}{5}} \ \mathbf{Y}_2(\hat{r})$ $\mathbf{F}_{\Xi N}^{(2)} = -3 \ \mathrm{MeV} \Rightarrow \mathbf{B}_{1p}^{\Xi^-}(\mathbf{0}^-) = \mathbf{1.24} \pm \mathbf{0.28} \ \mathrm{MeV}$ agrees with $\mathbf{B}_{1p}^{\Xi^-}(\exp.) = \mathbf{1.15} \pm \mathbf{0.20} \ \mathrm{MeV}$

Verified in ${}^{13}C(K^{-}, \pi^{-}){}^{13}_{\Lambda}C$ BNL-AGS experiment

Summary & Outlook

- Consistency reached among all five twin- Λ two-body capture events.
- V_Ξ=24.3±0.8 MeV in nuclear matter (ρ₀ = 0.17 fm⁻³), down to 21.9±0.7 MeV upon including Pauli correlations.
- $B_{1s}(\Xi^-) \approx 10$ MeV in C.
- Likely implications to dense neutron-star matter.

Thanks to Eli Friedman, partner in this project, and to all of you in the audience for attention!