

New experimental limits on the effective hadron interaction with strangeness = -3

Georgios Mantzaridis on behalf of the ALICE Collaboration Technical University of Munich STRANU 2021 26/05/2021

Entering the Hadronic S = -3 sector

Entering the Hadronic S = -3 sector

Femtoscopy pushes the boundary:

Experiment: ALICE Experiment at CERN

Collision system: pp

Energy: $\sqrt{s} = 13 \text{ TeV}$

Type of events: high multiplicity

"Enhanced production of strange hadrons in high multiplicity (HM) pp collisions" ALICE Coll. Nature Physics 13, 535 (2017)

Entering the Hadronic S = -3 sector

Georgios Mantzaridis | TUM, Chair E62

Method: Femtoscopy

Georgios Mantzaridis | TUM, Chair E62

 $ec{s}^*_{ ext{res},1}$

Daughter *

Source Function

ALICE Coll., Physics Letters B, 811 (2920) 135849

Consists of two parts:

- Gaussian core $\mathbf{r}^*_{\text{Core}}$ (common for all baryon pairs)
- Extension to an effective source size \mathbf{r}_{eff}^{*} by strongly decaying resonances (specific for each baryon pair)

 $ec{r}^*_{ ext{core}}$

Resonance 1

Get **r***_{Core} from the transverse mass distribution:

1.4

Daughter 2

 $s_{\mathrm{res},2}$

Resonance 2

Modelling the Correlation Function

7

$$C_{\exp}(k^*) = C_{\text{non-femto}}(k^*) \cdot C_{\text{femto}}(k^*)$$

 $C_{\text{non-femto}}(k^*)$ Baseline from non-femto effects such as energy conservation $C_{\text{femto}}(k^*)$ Final state interactions, depending on the analysed baryon pairs $C_{\text{femto}}(k^*) = \lambda_{\text{gen}} \cdot C_{\text{gen}}(k^*) + \lambda_{\text{bkg}} \cdot C_{\text{bkg}}(k^*) + \lambda_{\text{feed}} \cdot C_{\text{feed}}(k^*)$

p-Ω⁻: Data analysis

Excellent particle reconstruction with ALICE:

Reconstruction:

weak decay into $K^{\scriptscriptstyle -}$ and Λ

Purity of Ω^{-} selection:

95%

 $p-\Omega^{-}$ pairs:

ALICE Coll. Nature 588, 232 (2020)

Femto C(k*):

$C_{\rm gen}(k^*)$	79.0 %: Lattice QCD calculation
$C_{\rm gen}(k^*)$	79.0 %: Lattice QCD calculatio

 $C_{
m bgk}(k^*)$ 15.0 %: 3rd degree polynomial $C_{
m feed}(k^*)$ 06.0 %: Flat

ALICE

Femto C(k*)	:	C _{non-femto} (k*):
$C_{ m gen}(k^*)$	79.0 %: Lattice QCD calculation	a) constant
$C_{ m bgk}(k^*)$	15.0 %: 3rd degree polynomial	b) 1st degree
$C_{\text{feed}}(k^*)$	06.0 %: Flat	polynomial

Femto C(k*):		C _{non-femto} (k*):	Source Function:
$C_{ m gen}(k^*)$	79.0 %: Lattice QCD calculation	a) constant	<m<sub>T> = 2.2 GeV/c</m<sub>
$C_{ m bgk}(k^*)$	15.0 %: 3rd degree polynomial	b) 1st degree	$r_{core} = 0.86 \pm 0.06 \text{ fm}$
$C_{ m feed}(k^*)$	06.0 %: Flat	polynomial	r _{eff} = 0.95 ± 0.06 fm

Femto C(k*):	C _{non-femto} (k*):	Source Function:		
$C_{\rm gen}(k^*)$	79.0 %: Lattice QCD calculation	a) constant	<m<sub>T> = 2.2 GeV/c</m<sub>		
$C_{ m bgk}(k^*)$	15.0 %: 3rd degree polynomial	b) 1st degree	$r_{core} = 0.86 \pm 0.06 \text{ fm}$		
$C_{\text{feed}}(k^*)$	06.0 %: Flat	polynomial	r _{eff} = 0.95 ± 0.06 fm		
Extract the genuine Correlation function:					
	(1*)	γ (1 *))	(1, *)		

$$C_{\text{gen}}\left(k^{*}\right) = \frac{C_{\text{femto}}\left(k^{*}\right) - \lambda_{\text{bkg}} \cdot C_{\text{bkg}}\left(k^{*}\right) - \lambda_{\text{feed}} \cdot C_{\text{feed}}\left(k^{*}\right)}{\lambda_{\text{gen}}}$$

ALICE data

Coulomb

p-Ω⁻: Comparison with only Coulomb Potential

- No agreement between Coulomb
 only hypothesis and experimental
 data
 - ⇒ inclusion of the strong interaction necessary

ALICE Coll. Nature 588, 232 (2020)

$p-\Omega^{-}$: Detailed Look at the Interaction

0

-100

-400

-500

[√0] -200 −200 -300

ALTCE

p- Ω^- : Comparison with Coulomb + HAL QCD

C(k *)

- ALICE data
 Coulomb
 Coulomb + p-Q⁻ HAL QCD elastic
 Coulomb + p-Q⁻ HAL QCD elastic + inelastic
- Higher accuracy in the data than in the theoretical calculation
- Better agreement of data without inelastic contributions
- Prediction of a bound state with binding energy 2.5 MeV
 - \Rightarrow not reproduced by the data

ICE Coll. Nature 588, 232 (2020)

Data Analysis Λ - Ξ ⁻

Georgios Mantzaridis | TUM, Chair E62

Data Analysis Λ - Ξ ⁻

A-E⁻ **pairs:** $1.1 \cdot 10^{6} (5 \cdot 10^{3} \text{ for } \text{k}^{*} < 200 \text{ MeV/c})$

Georgios Mantzaridis | TUM, Chair E62

Femto C(k*):

- $C_{\rm gen}(k^*)$ 36.01 %: Lednicky model
- $C_{
 m bgk}(k^*)$ 8.13 %: 2nd degree polynomial $C_{
 m feed}(k^*)$ 55.85 %: Flat

Femto C(k*):

- $C_{\rm gen}(k^*)$ 36.01 %: Lednicky model
- $C_{
 m bgk}(k^*)$ 8.13 %: 2nd degree polynomial $C_{
 m feed}(k^*)$ 55.85 %: Flat

Non-Femto: C_{non-femto}(k*): a) A(1+ p k*²) b) A(1+ p k*³)

Femto C(k*)	<u>.</u>	Non- Femto:	Source Function:
$C_{ m gen}(k^*)$	36.01 %: Lednicky model	C _{non-femto} (k*):	<m<sub>T> = 2.0 GeV/c</m<sub>
$C_{ m bgk}(k^*)$	8.13 %: 2nd degree polynomial	a) A(1+ p k*²)	$r_{core} = 0.89 \pm 0.05 \text{ fm}$
$C_{ m feed}(k^*)$	55.85 %: Flat	b) A(1+ p k* ³)	r _{eff} = 1.03 ± 0.05 fm

Femto C(k*)	<u>):</u>	Non- Femto:	Source Function:	
$C_{ m gen}(k^*)$	36.01 %: Lednicky model	C _{non-femto} (k*):	<m<sub>T> = 2.0 GeV/c</m<sub>	
$C_{ m bgk}(k^*)$	8.13 %: 2nd degree polynomial	a) A(1+ p k*²)	$r_{core} = 0.89 \pm 0.05 \text{ fm}$	
$C_{ m feed}(k^*)$	55.85 %: Flat	b) A(1+ p k* ³)	r _{eff} = 1.03 ± 0.05 fm	
Correct the genuine theoretical calculated C(k*) for the additional contributions:				
$C_{\text{femto}} (k^*) = \lambda_{\text{gen}} \cdot C_{\text{gen}} (k^*) + \lambda_{\text{bkg}} \cdot C_{\text{bkg}} (k^*) + \lambda_{\text{feed}} \cdot C_{\text{feed}} (k^*)$				
$C_{\text{exp}}(k^*) = C_{\text{non-femto}}(k^*) \cdot C_{\text{femto}}(k^*)$				

Georgios Mantzaridis | TUM, Chair E62

The Lednicky-Lyuboshits model

$$C(k^{*})_{\text{Lednicky}} = 1 + \sum_{S} \rho_{S} \left[\frac{1}{2} \left| \frac{f(k^{*})^{S}}{r_{0}} \right|^{2} \left(1 - \frac{d_{0}^{S}}{2\sqrt{\pi}r_{0}} \right) + \frac{2\Re f(k^{*})^{S}}{\sqrt{\pi}r_{0}} F_{1}\left(2k^{*}r_{0} \right) - \frac{\Im f(k^{*})^{S}}{r_{0}} F_{2}\left(2k^{*}r_{0} \right) \right]$$

Analytical approach to model CF for strong final state interactions with the scattering amplitude f_0

$$f(k^*) = \left(\frac{1}{f_0} + \frac{1}{2}d_0k^{*2} - ik^*\right)^{-1}$$

d₀: effective range f₀: scattering length

Model comparison χ EFT LO

Scattering parameters

	EFT			
Λ (MeV)	550	600	650	700
singlet				
f_0^0	33.5	-35.4	-12.7	-9.07
d_0^0	1.00	0.93	0.87	0.87
triplet				
f_0^1	-0.33	- 0.33	- 0.32	-0.31
d_0^1	-0.36	-0.30	-0.29	-0.27

J. Haidenbauer and U.-G. Meissner, Phys. Lett. B 684 (2010) 275-280

Compatibility with theory

range	: 0 - 250 MeV/c	1	0 - 150 MeV/c
χ^2	: 10.93 - 78.31		10.67 - 75.80
n σ band	: 1.94σ - 7.95σ		2.47 σ - 8.20 σ

Model comparison NSC97a

Scattering parameters

	NSC97a
singlet	
f_{0}^{0}	0.80
d_0^0	4.71
triplet	
f_{0}^{1}	-0.54
d_0^1	-0.47

Th. A. Rijken, V. G. J. Stoks, and Y. Yamamoto, Phys. Rev. C 59 (1999) 21

Compatibility with theory

range	: 0 - 250 MeV/c	0 - 150 MeV/c	
χ^2	: 2.17 - 6.45	1.77 - 3.17	
n σ band	: 0.22σ - 1.12σ	0.50σ - 0.90σ	

Results: ∧-Ξ⁻

Comparison of ALICE data with meson exchange model and DEFT LO:

- ⇒ Suggests shallow strong interaction
- \Rightarrow Decrease of theoretical uncertainty of N Ω coupling

Summary

- First experimental constraints on the strangeness = -3 sector:
- First observation of the p- Ω interaction
 - published in nature last december
 - attractive strong interaction confirmed
 - Lattice QCD predicts a bound state <---> not seen in the data
 - theory missing the ${}^{3}S_{2}$ channel
- First observation of the Λ - Ξ interaction
 - shallow interaction potential
 - contradiction to χ EFT LO calculations
 - first constraints for the ${}^{3}S_{2}$ channel of p- Ω^{-1} : CC to Λ - Ξ^{-1} seems negligable

Outlook

- Further pair interactions to be explored in the future and further first principle calculations can be tested
- Run 3 and 4 will provide more data and the possibility for differential studies

Thank you for your attention

Georgios Mantzaridis | TUM, Chair E62

ALICE

Backup

Enhanced strangeness production in HM events

<u>Data sample:</u>

- pp 13 TeV (1000 M high multiplicity events)

Tracking and PID:

- Hyperon reconstruction with purities >95%

Nature Physics volume 13, 535–539(2017)

Effect of the Resonances on the Source

The strong p-Ω⁻ interaction

- -> Calculations provide the potential shape for the ${}^{5}S_{2}$ channel (weight $\frac{5}{3}$).
- -> Currently, no model for the other channel in S-wave interaction, ${}^{3}S_{1}$ (weight $\frac{3}{8}$). Requires coupled channel treatment.

Assume two different (~extreme) scenarios:

1.- Complete absorption for distances $r < r_0$. r_0 chosen from the condition $|V({}^5S_2)| < |V(Coulomb)|$ for $r > r_0$

2.- Complete elastic with a similar attraction as ${}^{5}S_{2}$ Kenji Morita et al., Phys. Rev. C101, 015201 (2020)

ALICE

The strong $p-\Omega^-$ interaction

Georgios Mantzaridis | TUM, Chair E62

Effect of the boundstate on $p-\Omega^-$

