

Proton- ϕ interaction studied in pp collisions with ALICE at the LHC

Emma Chizzali on behalf of the ALICE Collaboration Technical University of Munich STRANU 2021 26/05/2021

- Neutron stars
 - Composition of the interior not well constrained (high densities)
 - Equation of State depends on constituents and interactions among them
- Possibility of hyperon star?

- Neutron stars
 - Composition of the interior not well constrained (high densities)
 - Equation of State depends on constituents and interactions among them
- Possibility of hyperon star?

- Neutron stars ٠
 - Composition of the interior not well constrained (high densities)
 - Equation of State depends on constituents and interactions ٠ among them
- Possibility of hyperon star?
 - With increasing density hyperon production might become ٠ energetically favourable

- Neutron stars
 - Composition of the interior not well constrained (high densities)
 - Equation of State depends on constituents and interactions among them
- Possibility of hyperon star?
 - With increasing density hyperon production might become energetically favourable
 - At large densities Y–Y interaction can play a role

Neutron Stars

- Neutron stars
 - Composition of the interior not well constrained (high densities)
 - Equation of State depends on constituents and interactions among them
- Possibility of hyperon star?
 - With increasing density hyperon production might become energetically favourable
 - At large densities Y–Y interaction can play a role
 - Can be modeled as effective φ meson exchange S. Weissborn et al., *Nuclear Physics* A 881 (2012) 62-77

Emma Chizzali | STRANU2021

Meson exchange

- φ meson as mediator of the strong repulsive force between hyperons
- Including repulsive Y–Y interaction leads to stiffening of the EoS

Emma Chizzali | STRANU2021

Meson exchange

- φ meson as mediator of the strong repulsive force between hyperons
- Including repulsive Y–Y interaction leads to stiffening of the EoS
 - ALICE correlation measurement of $p-\Xi^-$ validate HAL QCD calculations \rightarrow In PNM U_z slightly repulsive \sim 6 MeV ALICE, Collab. PRL 123 (2019) 112002 Takashi Inoue, AIP Conference Proceedings 2130 (2019) 020002

12

13

2.1

1.9

1.8

1.7

1.6

1.5 └ 9

10

11

R [km]

With ϕ

M / M_{solar}

Without ϕ

+40+20

-20

-40

Emma Chizzali | STRANU2021

14

Meson exchange

- φ meson as mediator of the strong repulsive force between hyperons
- Including repulsive Y–Y interaction leads to stiffening of the EoS
 - ALICE correlation measurement of p-Ξ⁻ validate HAL QCD calculations → In PNM U_Ξ slightly repulsive ~ 6 MeV ALICE, Collab. *PRL* 123 (2019) 112002
 Takashi Inoue, *AIP Conference Proceedings* 2130 (2019) 020002
- From theoretical calculations assuming SU(3) symmetry

$$2g_{\phi\Lambda} = -\frac{2\sqrt{2}}{3}g_{\omega N}$$
 and $g_{\omega N} \propto g_{\phi N} \rightarrow g_{\phi\Lambda} \propto g_{\phi N}$

S. Weissborn et al., Nuclear Physics A, 881 (2012) 62-77

Correlation function

Emma Chizzali | STRANU2021

 $\overline{p_2}$

 $S(\bar{\gamma})$

The source

- Source constrained from pp pairs (well known interaction)
 - Gaussian core from which particles are emitted is effectively increased by short-lived strongly decaying resonances ($c\tau \approx r_{core}$)

 $S(\bar{\gamma})$

 p_1

 $\overline{p_2}$

 $\psi(\vec{r},\vec{k})$

• Use universal source model to get p- φ source ALICE Collab., *Physics Letters B*, **811** (2020) 135849

 $\overrightarrow{p_1}$

 $\psi(\vec{r},\vec{k})$

The source

- Source constrained from pp pairs (well known interaction)
 - Gaussian core from which particles are emitted is • effectively increased by short-lived strongly decaying resonances ($c\tau \approx r_{core}$)

r_{core} (fm)

1.4

1.3

1.2

1.1

0.9

0.8

0.7

ALI-PUB-483616

- Use universal source model to get p- ϕ source ALICE Collab., Physics Letters B, 811 (2020) 135849
- Gaussian core source scales with $\langle m_T \rangle$
 - $r_{\rm core} = 0.98 \pm 0.04 \, {\rm fm}$
- Exponential tail from resonances
 - no relevant contribution from strongly decaying resonances feeding to the ϕ
 - Sizable amount of protons from decay of e.g. Delta resonances (only ~33% primordial protons)
 - effective Gaussian size: r_{eff} = 1.08 ± 0.05 fm

AITCF

Analysis

- LHC Run 2 data (2016-2018)
- **High-multiplicity** (HM) pp collisions at $\sqrt{s} = 13$ TeV
 - About 1 billion events
 - Enhanced production of particles with hidden and open strangeness
- ALICE provides excellent PID by means of TPC and TOF
 - Proton detected directly
 - Proton purity of 99% with primary fraction 82% ALICE Collab., Phys. Lett B 811 (2020) 135849
 - ϕ candidates reconstructed from $\phi \rightarrow K^+K^-$
 - p_T integrated purity of 66%

pair	yield with k*<200 MeV/c
$ar{p}-oldsymbol{\phi}$	3.61 x 10 ⁴
$p-\phi$	4.17 x 10 ⁴

Emma Chizzali | STRANU2021

ALICE Collab., Eur. Phys. J.C 81 (2021) 3, 256

 $C_{exp}(k^*) = C_{p-\phi}(k^*)$

enhancement \rightarrow additional contributions to CF besides genuine p- ϕ interaction

 $C_{exp}(k^*) = C_{non-femto}(k^*) \cdot C_{femto}(k^*)$

 $C_{exp}(k^*) = C_{non-femto}(k^*) \cdot C_{femto}(k^*)$

Background (non-femto)

- auto-correlations (minijets)
- energy-momentum conservation effects

$$C_{exp}(k^*) = C_{non-femto}(k^*) \cdot C_{femto}(k^*)$$

Background (non-femto)

- auto-correlations (minijets)
- energy-momentum conservation effects

<u>Contributions from FSI</u> (femto) quantified by purity (\mathcal{P}_i) and feed-down fractions (f_i) via $\lambda_{ij} = \mathcal{P}_1 \cdot f_{i_1} \cdot \mathcal{P}_2 \cdot f_{j_2}$

 $C_{exp}(k^*) = C_{non-femto}(k^*) \cdot C_{femto}(k^*)$

Background (non-femto)

- auto-correlations (minijets)
- energy-momentum conservation effects

<u>Contributions from FSI</u> (femto) quantified by purity (\mathcal{P}_i) and feed-down fractions (f_i) via

$$\lambda_{ij} = \mathcal{P}_1 \cdot f_{i_1} \cdot \mathcal{P}_2 \cdot f_{j_2}$$

- Genuine p-φ (46.3%)
- Flat contribution from misidentified and secondary protons (10.4%)
- Combinatorial background from misidentified φ mesons (43.3%)

$$C_{exp}(k^*) = C_{non-femto}(k^*) \cdot C_{femto}(k^*)$$

Background (non-femto)

- auto-correlations (minijets)
- energy-momentum conservation effects

<u>Contributions from FSI</u> (femto) quantified by purity (\mathcal{P}_i) and feed-down fractions (f_i) via

$$\lambda_{ij} = \mathcal{P}_1 \cdot f_{i_1} \cdot \mathcal{P}_2 \cdot f_{j_2}$$

- Genuine p-φ (46.3%)
- Flat contribution from misidentified and secondary protons (10.4%)
- Combinatorial background from misidentified φ mesons (43.3%)

- Present in previous meson-meson and meson-baryon analyses ALICE Collab. Phys. Rev. Lett. **124** (2020) 092301
- Auto-correlated p and ϕ emitted in jet-like structures

Minijets

- Present in previous meson-meson and meson-baryon analyses ALICE Collab. Phys. Rev. Lett. **124** (2020) 092301
- Auto-correlated p and φ emitted in jet-like structures
- Less pronounced in spherical events
 - Event shape classified by transverse Sphericity S_T ALICE Collab., JHEP 09 (2019) 108
 - Caluclation from eigenvalues $\lambda_1 \geq \lambda_2$ of Transverse Momentum Matrix:

$$M_{xy} = \frac{1}{\sum_{j} p_{Tj}} \sum_{i} \frac{1}{p_{Ti}} \begin{bmatrix} p_{xi}^2 & p_{xi} p_{yi} \\ p_{xi} p_{yi} & p_{yi}^2 \end{bmatrix} \Rightarrow S_T = \frac{2\lambda_2}{\lambda_1 + \lambda_2}, S_T \in [0,1]$$

• In this Analysis: $0.7 < S_T < 1.0$

Minijets

- Present In previous meson-meson and meson-baryon analyses ALICE Collab. Phys. Rev. Lett. **124** (2020) 092301
- Auto-correlated p and φ emitted in jet-like structures
- Less pronounced in spherical events
 - Event shape classified by transverse Sphericity S_T ALICE Collab., JHEP 09 (2019) 108
 - Caluclation from eigenvalues $\lambda_1 \geq \lambda_2$ of Transverse Momentum Matrix:

$$M_{xy} = \frac{1}{\sum_{j} p_{Tj}} \sum_{i} \frac{1}{p_{Ti}} \begin{bmatrix} p_{xi}^2 & p_{xi} p_{yi} \\ p_{xi} p_{yi} & p_{yi}^2 \end{bmatrix} \rightarrow S_T = \frac{2\lambda_2}{\lambda_1 + \lambda_2}, S_T \in [0,1]$$

- In this Analysis: $0.7 < S_T < 1.0$
- Residual minijet background well described by Phytia 8 ALICE Collab., *Phys. Rev. D* 84 (2011) 112004

Non-femtoscpic background

Combinatorial p-K⁺K⁻ background

Combinatorial p-K⁺K⁻ background

- φ candidates reconstructed via invariant mass of K⁺K⁻
- purity of reconstructed φ mesons only ~57%

 \rightarrow correlation signal from 2 and 3body interaction between p, K⁺ and K⁻

Combinatorial p-K⁺K⁻ background

Emma Chizzali | STRANU2021

Non-femtoscpic background

ALI-PUB-487001

Non-femtoscpic background

Emma Chizzali | SQM2021

Results p-¢

• Observation of **attractive** $p-\phi$ interaction

32

Results p-¢

- Observation of **attractive** $p-\phi$ interaction
- CF tool to study coupled channels (CC) J. Haidenbauer, Nucl.Phys.A 981 (2019) 1 Y. Kamiya et al., Phys.Rev.Lett. 124 (2020) 13
- Above-threshold channels $(m_{channel} > m_{pair})$ can lead to cusp structure at channel opening k* in p- ϕ system e.g. K*- Λ , K*- Σ

33

Results p–¢

- Observation of **attractive** $p-\phi$ interaction
- CF tool to study coupled channels (CC) J. Haidenbauer, Nucl.Phys.A 981 (2019) 1 Y. Kamiya et al., Phys.Rev.Lett. 124 (2020) 13
- Above-threshold channels $(m_{channel} > m_{pair})$ can lead to cusp structure at channel opening k* in p- ϕ system e.g. K*- Λ , K*- Σ
- Below-threshold channels effectively increase CF e.g. K– Λ , K– Σ , K– Λ (1405)

Lednicky-Lyuboshits approach

$$C(k^*) = \sum_{S} \rho_S \left[\frac{1}{2} \left| \frac{f(k^*)}{r_0} \right|^2 \left(1 - \frac{d_0}{2\sqrt{\pi}r_0} \right) + \frac{2\Re f(k^*)}{\sqrt{\pi}r_0} F_1(2k^*r_0) - \frac{\Im f(k^*)}{r_0} F_2(2k^*r_0) \right]$$

Analytical approach to model CF for strong final state interaction within effective range expansion R. Lednicky and V.L. Lyuboshits, *Sov. J. Nucl. Phys.* **53** (1982) 770

• isotropic source of Gaussian profile $S(r^*)$

• scattering amplitude:
$$f(k^*) = \left(\frac{1}{f_0} + \frac{1}{2}d_0k^{*2} - ik^*\right)^{-1}$$

- Effective range d_0 and scattering length f_0
- spin averaged scattering parameters

Results p-ф

- Scattering parameters extracted by employing the analytical Lednicky-Lyuboshits approach
- Imaginary contribution to the scattering length f₀ accounts for inelastic channels

 $d_0=7.85\pm1.54(\text{stat.})\pm0.26(\text{syst.}) \text{ fm}$ Re(f₀)=0.85±0.34(stat.)±0.14(syst.) fm Im(f₀)=0.16±0.10(stat.)±0.09(syst.) fm

- Elastic p– φ coupling dominant contribution to the interaction in vacuum

https://arxiv.org/abs/2105.05578

Results p-ф

- Yukawa-type of potential with real parameters Phys. Rev. Lett. 98 (2007) 042501
 - $V(r) = -A \cdot \frac{e^{-\alpha r}}{r}$
 - Strenght A = $0.021 \pm 0.009(\text{stat.}) \pm 0.006(\text{syst.})$ inverse range $\alpha = 65.9 \pm 38.0(\text{stat.}) \pm 17.5(\text{syst.})\text{MeV}$
- CF obtained numerically using CATS framework D.L. Mihaylov et al, *Eur. Phys. J.* C78 (2018) no.5, 394
- Extraction of N– ϕ coupling constant as \sqrt{A}

 $g_{\phi N} = 0.14 \pm 0.03 (stat.) \pm 0.02 (syst.)$

Link to Y−Y interaction g_{φΛ} ∝ g_{φN}
 S. Weissborn et al., Nuclear Physics A, 881 (2012) 62-77

ALI-PUB-486981

Summary

- First measurement of the $p-\phi$ correlation function
- Attractive $p-\phi$ interaction dominated by elastic contributions
- Extraction of $g_{\phi\Lambda} \propto g_{\phiN} \rightarrow$ Relevant for meson exchange between hyperons in Neutron Stars
- Published on <u>https://arxiv.org/abs/2105.05578</u>, submitted to PRL

BACKUP

Emma Chizzali | STRANU2021

Contributions from:

genuine

feed-down r

misidentifications

- Separation between contributions to FSI and general background $C_{exp}(k^*) = C_{non-femto}(k^*) \cdot C_{femto}(k^*)$
- contributions to FSI (femto) quantified by purity (\mathcal{P}_i) and feed-down fractions (f_i) : $\lambda_{ij} = \mathcal{P}_1 \cdot f_{i_1} \cdot \mathcal{P}_2 \cdot f_{j_2}$
- Additional background (non-femto) arises from auto-correlations (mini-jets) and energy-momentum conservation effects

Coupled Channels

- CF tool to study coupled channels (CC) J. Haidenbauer, Nucl.Phys.A 981 (2019) 1 Y. Kamiya et al., Phys.Rev.Lett. 124 (2020) 13
- CC share same quantum numbers as particle pair
- Above-threshold channels (m_{channel} > m_{pair}) lead to cusp structure at channel opening k*
- Below-threshold channels (m_{channel} < m_{pair}) effectively increase CF

Emma Chizzali | STRANU2021

Accessing the short-range interaction

• Small particle-emitting source created in pp and p–Pb collisions at the LHC

D. Mihaylov et al., *Eur. Phys. J.* **C78** (2018) 394

- Gives rise to pronounced correlation signal
- Small interparticle distance \rightarrow Doorway to study large densities

Results p-ф

- Gaussian-type potential with real parameters Phys. Rev. Lett. 98 (2007) 042501
 - $V(r) = -V_{eff} \cdot e^{-\mu r^2}$
- CF obtained numerically using CATS framework D.L. Mihaylov et al, *Eur. Phys. J.* C78 (2018) no.5, 394
- Very shallow potential depth found of V_{eff} = 2.5±0.9(stat.) ± 1.4(syst.) MeV μ = 0.14 ± 0.06(stat.) ± 0.09(syst.) fm⁻²
- Much shallower than Lattice QCD potential for N–J/ψ strong interaction (indirect comparison)
 T. Sugiura, Y. Ikeda, and N. Ishii, *PoS* LATTICE2018 (2019) 093

