

Constraining the N- $\Lambda \leftrightarrow$ N- Σ coupled-system using femtoscopy at the LHC

Maximilian Korwieser (Technische Universität München, E62) STRANU: HOT TOPICS IN STRANGENESS NUCLEAR AND ATOMIC PHYSICS 24 May 2021 – 28 May 2021

III Do Hyperons appear in Neutron Stars?

Dimensions

R \sim 10 – 15 km M \sim 1.5 – 2 M $_{\odot}$

Outer Crust lons, electron gas, Neutrons

Inner Core

Neutrons? Protons? Hyperons? Kaon condensate? Quark Matter?

Determination of the EoS challenging

- Particle composition of NS?
- Interaction among constituents?

III Do Hyperons appear in Neutron Stars?

Dimensions

R \sim 10 – 15 km M \sim 1.5 – 2 M $_{\odot}$

Outer Crust lons, electron gas, Neutrons

Inner Core

Neutrons? Protons? Hyperons? Kaon condensate? Quark Matter?

Determination of the EoS challenging

- Particle composition of NS?
- Interaction among constituents?

Considering energetically favourable scenarios

Naively introduce Λ and other hyperons

TIT Constraints from Astrophysics

'Hyperon-Puzzle'

 Hyperonic EoS in compatible with observations

Potential solutions

- Procure high precision measurements of N-Y interaction
- Provide constraints for genuine NNY-forces

Π p-Λ Interaction and role of the N-Σ coupling

Experimental efforts

- Large uncertainties for low momenta
- No observation of predicted cusp from N–A \leftrightarrow N–S

Theory efforts

- N–Λ ↔ N–Σ affects Λ behaviour at finite density
- Implications for ΛNN(*)

NLO13: J.Haidenbauer, N.Kaiser et al., NPA 915, 24 (2013) NLO19: J.Haidenbauer, U. Meiβner, Eur.Phys.J.A 56 (2020) (*)D. Gerstung et al. Eur.Phys.J.A 56 (2020) 6, 175

Π Knowledge about N-Σ interaction

T. Nagae et al., Phys. Rev. Lett. 80 (1998) 1605.

Theory predictions

Model	U_{Σ} (MeV)
NSC97f	-16.1
ESC16	-3.3
fss2	7.5
HAL QCD	14.6
χEFT (NLO)	17.1

7

T. Rijken *et al.*, *Phys. Rev.* C59 (1999) 21.
M. Nagels *et al.*, *Phys. Rev.* C99 (2019) 044003.
Y. Fujiwara *et al.*, *Prog. Part. Nucl. Phys.* 58 (2007) 439.
HAL QCD Collab., *AIP Conf. Proc.* 2130 (2019) 020002.
J. Haidenbauer *et al.*, *Nucl. Phys.* A915 (2013) 24.

Inventory of theoretical models

- Strongly isospin dependent interaction
- · Different scattering parameters predicted by different models

III Basics of Femtoscopy

The emitting source

Universal source model

- r_{core} fixed for each pair based on $\langle m_{\tau} \rangle$
- Particle-specific resonances are added to the core

Core radii

- $r_{core}(p\Lambda) = 1.02$, $r_{eff}(p\Lambda) = 1.23$
- $r_{core}(p\Sigma^0) = 0.91$, $r_{eff}(p\Sigma^0) = 1.25$

TIT Femtoscopy: Overview Coupled-Channels

TIT Femtoscopy in ALICE

T p- Λ Analysis: Purity of Λ candidates

$$C_{exp}(k^*) = P_{\Lambda} C_{corrected}(k^*) + (1 + P_{\Lambda}) C_{p\tilde{\Lambda}}(k^*)$$

Explanation

• Purity of the reconstructed Λ

Derivation

 Double gaussian fit to invariant mass spectrum yields P(Λ) = 95.3 % [P(p) = 99.4 %]

Π p-Λ Analysis: λ Parameters

$$C_{exp}(k^*) = P_{\Lambda}C_{corrected}(k^*) + (1 - P_{\Lambda})C_{p\tilde{\Lambda}}(k^*)$$
$$b(k^*) + (\lambda_{p(\Sigma^0)}C_{p(\Sigma^0)}(k^*) + (\lambda_{p(\Xi)}C_{p(\Xi)}(k^*) + (\lambda_{ff}) + (\lambda_{\tilde{p}\Lambda}))$$

Explanation

• In order to quantify each single contribution use the formalism of λ parameters

Derivation

- Purity as before
- Fractions determined data driven (CPA template fits)

fraction purity

TIT p- Λ Analysis: λ Parameters

$$\begin{split} C_{exp}(k^*) &= P_{\Lambda}C_{corrected}(k^*) + (1 - P_{\Lambda})C_{p\tilde{\Lambda}}(k^*) \\ b(k^*) & [\lambda_{p\Lambda}C_{p\Lambda}(k^*) + \lambda_{p(\Sigma^0)}C_{p(\Sigma^0)}(k^*) + \lambda_{p(\Xi)}C_{p(\Xi)}(k^*) + \lambda_{ff} + \lambda_{\tilde{p}\Lambda}] \\ & 15.7\% & 19.0\% \end{split}$$

Explanation

• In order to quantify each single contribution use the formalism of λ parameters

Derivation

- Purity as before
- Fractions determined data driven (CPA template fits)

Pair	λ (%)
p-A	47.1
ρ-Σ0	15.7
p-Ξ	19.0
Flat- feeddown	17.6
р~-Л	0.6

p-Λ Analysis: Modeling the feeddown

Note

• **p-Σ⁰** : Not well known

(*)T. Hatsuda Front. Phys. 13(6), 132105 (2018)) (**) ALICE Coll. Phys. Rev. Lett 123, (2019) 112002 ALICE Coll. Nature 588, 232–238 (2020)

• **p**-Ξ⁻ : Known from femtoscopic measurements^(**)

Π p-Λ Analysis: Baseline

$$C_{exp}(k^*) = P_{\Lambda}C_{corrected}(k^*) + (1 - P_{\Lambda})C_{p\tilde{\Lambda}}(k^*)$$

$$b(k^*)[\lambda_{p\Lambda}C_{p\Lambda}(k^*) + \lambda_{p(\Sigma^0)}C_{p(\Sigma^0)}(k^*) + \lambda_{p(\Xi)}C_{p(\Xi)}(k^*) + \lambda_{ff} + \lambda_{\tilde{p}\Lambda}]$$

Explanation

Non-femtoscopic background

Π p-Λ Analysis: Final CF

$$C_{exp}(k^*) = P_{\Lambda}C_{corrected}(k^*) + (1 - P_{\Lambda})C_{p\tilde{\Lambda}}(k^*)$$

CF used in fits

- Signal of interest corrected for residual mis-identifications and unfolded for momentum resolution
 - Effect most pronounced at k* < 60 MeV/c → changes up to 2%

$$C_{corrected}(k^*) = \frac{C_{exp}(k^*) + (1 - P_{\Lambda})C_{p\tilde{\Lambda}}(k^*)}{P_{\Lambda}}$$

Π p-Λ Interaction: Femtoscopics result

ALICE collab., arXiv:2104.04427 submitted to PRL

New Results

- <u>First observation</u> of cusp from $N-\Lambda \leftrightarrow N-\Sigma$
- High precision data down to low k*

Discussion

- NLO19 (600) preferred
 - less (enhanced) attractive Λ interaction in vacuum (at high densities)
 - requires more repulsive NNA
 - deviations > 3σ

Π p-Λ Interaction: Femtoscopics result

ALICE collab., arXiv:2104.04427 submitted to PRL

New Results

- <u>First observation</u> of cusp from $N-\Lambda \leftrightarrow N-\Sigma$
- High precision data down to low k*

Discussion

• Negligible interaction for $p-\Sigma^0$ is favoured

Π p- Σ^0 Interaction: Femtoscopic results

New Results

First observation of N–Σ ٠ interaction

Discussion

- CF consistent with reference baseline obtained from sidebands
 - shallow attractive interaction of p-Σ
 - indicates positive sign for potential

TIT Summary & Outlook

High precision measurement of p-Λ

- High resolution of cusp structure $N{-}\Lambda \leftrightarrow N{-}\Sigma$
- Favours NLO19 (600):
 - less (enhanced) attractive Λ interaction in vacuum (at high densities)
 - necessitates more repulsive NNΛ
- => High quality data available for model tuning
- => Probing the genuine 3-body forces with high precision femtoscopy in RUN3

First successful observation of p-Σ

- In favour of shallow strong interaction
- Indicates positive sign for single particle potential
- => Clarification of the role of Σ within reach with RUN3 data

TIT Summary & Outlook

Back-up

Back-up

- NΣ additional slides with comments about exp.data till now
- Femtoscopy: Information about the source
- Reconstruction of Σ0 with ALICE
- Reconstruction of \land with ALICE
- CC-modified Koonin-Pratt eqn.
- Details on the unfolding procedure

Knowledge about N- Σ

T. Nagae et al., Phys. Rev. Lett. 80 (1998) 1605.

Inventory of experimental data

- Few events of hypernuclei
- Optical potential derived from atomic data

Femtoscopy: Source

Femtoscopy: Source

Universal source model

- r_{core} fixed for each pair based on $\langle m_{T} \rangle$
- Particle-specific resonances are added to the core

Notice

Small radii probe large densities

Femtoscopy: Source Resonances

Reconstruction of Σ

Reconstruction

- Target channel γΛ (B.R. 100%)
 - Λ identification subsequent decay into pπ⁻ (B.R 64%)
 - γ measurement via pair conversion (prob. 8% in ALICE central barrel)

Dataset

- ALICE Run 2 data
- High-multiplicity pp collisions at $\sqrt{s} = 13$ TeV

Reconstruction of Λ

Reconstruction

• Target channel $p\pi^{-}$ (B.R 64%)

Dataset

- ALICE Run 2 data
- High-multiplicity pp collisions at $\sqrt{s} = 13$ TeV

Femtoscopy: Overview Coupled-Channels (CC)

Unfolding for momentum resolution

- Motivation: more convenient representation for theorists to test their models.
- Method: brute force.

Each fitted correlation function (45 fit x 2 purity x 2 sideband variations, 180 in total) is unfolded by:

- Fitting the experimental correlation, by applying the smearing on the theoretical curve.
- The theory curve providing the best χ^2 is used as an initial guess for the unfolded correlation.
- The unfolded correlation is bootstrapped and folded to the exp. data, until a better χ^2 is found.
- Repeated until obtaining a χ^2 /DataPoints < 0.2.

Formula up-keep

 $b(k^*)[\lambda_{p\lambda}C_{th,p\lambda}(k^*)+\lambda_{p\sigma^0} C_{th,p\sigma^0}(k^*) +\lambda_{p\xi^-} C_{th,p\xi^-}(k^*)+\lambda_{ff}+\lambda_{\xi^-} C_{th,p\xi^-}(k^*)+\lambda_{ff}+\lambda_{tilde}]$

 $\label{eq:c_exp}(k^*) = b(k^*)[\label{eq:c_exp}(k^*)+\label{eq:c_exp}(k^*)+\label{eq:c_exp}(k^*)+\label{eq:c_exp}(k^*)+\label{eq:c_exp}(k^*)+\label{eq:c_exp})] \\ C_{p(\gamma\Lambda))}(k^*)+\label{eq:c_exp}(k^*)+\label{eq:c_exp}(k^*)+\label{eq:c_exp})] \\ \end{array}$

