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Motivation 
Ø  Hyperons in neutron stars (NSs) have been considered by many authors for the last 60 

years since the pioneering work of Ambartsumyan & Saakyan. However, the majority of 
them (not to say almost all) have considered their role mainly on the NS EoS, composition 
& mass. Subject of very active research in the last years is the search for a solution of the 
so-called “hyperon puzzle”   

Ø  Neutron stars are, however, evolving objects where various dynamical processes can 
occur. Their theoretical description requires the  knowledge of transport properties (e.g. 
thermal conductivity, shear viscosity)  of dense NS matter 
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²  Study of transport properties (thermal conductivity, shear viscosity & momentum 
transfer rates) of non-superfluid npΣΛeµ β-stable matter. Calculations are 
performed within the non-relativistic BHF approach using the AV18 NN + UIX 
NNN forces plus the NSC97e YN & YY 

This talk in few words 

In collaboration with Peter S. Shternin  
(Ioffe Institute, St. Petersburg) 

²  Neutrons dominate the baryon contribution to the transport properties as in the 
case of NS cores with only nucleons & the total thermal conductivity over the 
whole range of densities 

We find: 

²  Due to the deleptonization of the NS core because of the appearance of Σ-, neutrons 
dominate also the shear viscosity at high densities contrary to the case without 
hyperons where the lepton contribution dominates always this transport coefficient  

²  Althogh the p, Σ- & Λ contributions are small, these species are important in 
mediating the neutron mean free path  



Transport Coefficients in a Nutshell 

The calculation of transport coefficients in 
NS cores is based on the transport theory 
of multicomponent Fermi liquids 
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T matrix for the scattering of quasiparticles i 
& j with momentum p1 & p2  

where pi, επι  & npi are the momentum, energy & momentum distribution functions (MDFs) of the 
quasiparticle i and the r.h.s. term is  



Transport Coefficients in a Nutshell 
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The collision term is usually linearized by considering small perturbations of the MDFs  
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Even in their linearized form the solution of the kinetic equation is in general rather cumbersome. 
Without entering into the details in the hydrodynamic limit, in which we are interested ere the transport 
equation takes the form    
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Transport Coefficients in a Nutshell 

Xi xi, p̂i( ) = FiXQ (xi )DQ ( p̂i )Q Driving term of the Boltzmann equation

Ø  Fi: scalar function which can depend on the Fermi velocities, temperature, etc … 

Ø  XQ(xi) function that depends only on the energy variable xi 

Ø  DQ(pi) irreducible tensor quantity, e.g. spherical harmonic, … 

Ø  Q is related to the gradients of the variables specifying the local equilibrium of the 
system 

In particular: 
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Transport Coefficients in a Nutshell 

The solution of the transport equation can 
be written in the form

Φi xi , p̂i( ) = γ i (xi )DQ ( p̂i )Q

Once the ΦI  are known the different transport coefficients can be obtained in general as

C = T Opi

∂ni
0 (εpi )
∂xip

∑ Φpi
i
∑

with

Opi =GiXQ (xi )DQ ( p̂i )

Gi: scalar function which can depend on the Fermi velocities, 
temperature, etc … 



Transport Coefficients in a Nutshell 
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Thermal conductivity (NS cooling) 

Shear viscosity (NS oscillations, e.g., r-mode 
instability) 

Momentum transfer rate in the binary 
collision between particle species i and j 
(NS magnetic field evolution) 

As said, here we consider three transport coefficients: 

Ø  T: temperature; ni, pFi: number density and Fermi momentum of species i 

Ø                        mean free path for thermal conductivity, shear viscosity & momentum 
relaxation in the collisions between particle species i & j (usually related with 
traditional diffusion coefficients                                                 ) 
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In general, the mean free path are not the same and need to be determined 
microscopically for the corresponding transport problem 



Transport Coefficients in a Nutshell 

Ø  On practice the problem reduces to solve a system of linear equations for the 
mean free paths   

All possible pair collisions in the mixture should be included, but in NS cores this 
system decouples in two subsystems: one corresponding to the strong interaction 
sector and one corresponding to the electromagnetic one  

Ø  Momentum transfer rates are treated in the lowest-order momentum expansion of the 
kinetic theory     
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Transport Coefficients in a Nutshell 

Since the particles are degenerate only collisions in the vicinity of the Fermi surfaces 
contribute to transport & transport cross sections mediated by the strong interaction read 
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Transport Coefficients in a Nutshell 

Up to here we have consider the contribution to the transport coefficients  from the baryon 
sector mediated by the strong interaction. Charge particles (p, Σ-, e- & µ-) contribute 
through electromagnetic interactions. 

Ø  In addition we neglect the interferences between strong & electromagnetic 
amplitudes and consider these interaction channels separately  

Ø  Main difference between strong & electromagnetic amplitudes is that the last ones 
lead to mean free paths with a non-Fermi liquid temperature dependence.  The 
(electromagnetic) transport matrices do not follow a T2 scaling but generally have a 
weaker temperature dependence depending on the transport problem in question.   

² Thermal conductivity: simple universal expression independent 
of the content of charge particles in matter 

Ø  The off-diagonal matrix elements of            are small and the lepton & baryon 
contributions can be separated  
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Microscopic Inputs 	

The microscopic inputs needed to obtain the transport coefficients 
are the composition of β-stable matter, the effective masses of 
the different species & in-medium scattering NN, YN & YY 
matrices  

Ø  BHF approach of hyperonic matter using Av18 NN+UIX 
NNN & NSC97e YN-YY models     
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Ø  Equilibrium under weak interaction processes & charge neutrality is imposed on top of this 
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obtained self-consistently and the effective mass of the 
species Bi given by 

Ø  G-matrices are taken at the corresponding Fermi surfaces when evaluating the cross sections 



Transport Matrices & Mean Free Paths 	


Ø  Similar behavior of          &    Λcc
κ Λcc

η

Λnn
κ

Ø  Lowest values            &      
     largest mean free path of neutrons which   
     will dominate baryon transport  

Λnn
η

Ø  Protons & Σ- scatter one-two orders of 
magnitude more effectively. Almost similar 
values above ~ 0.5 fm-3 because their fractions 
are similar. Not expected to give a sizable 
contribution to the overall transport 
coefficients.  

Ø          &            lie in between    ΛΛΛ
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If the non-diagonal elements of the transport 
matrices are small can be neglected the system 
of equation for the mean free paths decouples 
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A bit more on the Transport Matrices	


Ø  Soon after Σ- onset mutual pΣ- collisions become the dominant ones of these two species   

Ø  The large value of the pΣ- transport matrix element         small p & Σ- mean free paths 
& therefore these two baryons are not expected to influence the transport of the other 
species 
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Λii
κ (η) Dashed (dot-dashed) lines: positive (negative) non-

diagonal matrix elements    

Thermal Conductivity Case    Shear Viscosity Case    



Thermal Conductivity κ	


Ø  Neutrons dominate always the baryon 
contribution to κ over the whole density 
range because they have the largest 
mean free path & are the most 
abundant species 

Ø  Neutrons dominate also the total value 
of κ  except at T=109 K where the lepton 
(e lec t ron) cont r ibu t ion becomes 
comparable  



Shear Viscosity η	


Ø  Lepton contribution is dominant at low densities 
while neutrons give the main contribution at high 
densities due to the deleptonization induced by 
the appearance of the Σ- in contrast with the NS 
case without hyperons where leptons always 
dominate η (see e.g. Fig. 14 of PRD 102, 063010 
(2020))  

Ø  The baryon contribution is similar to the case 
without hyperons but the total value of η can be 
several orders of magnitude smaller due to the 
suppression of the lepton contributtion 



Momentum Transfer Rates in Baryon Collisions  	


Ø  Momentum transfer rates between nucleon collisions is in an order-of-magnitude 
agreement with the results for pure nucleonic mater (see e.g. Fig. 17 of PRD 102, 063010 
(2020)) 

Ø  The large value of JpΣ- is due to the particularly strong attraction predicted in this 
channel by the NSC97e model 



The Message (again) of this Talk 

²  Study of transport properties (thermal conductivity, shear viscosity & momentum 
transfer rates) of non-superfluid npΣΛeµ β-stable matter. Calculations are 
performed within the non-relativistic BHF approach using the AV18 NN+ UIX 
NNN forces plus the NSC97e YN & YY 

²  Neutrons dominate the baryon contribution to the transport properties as in the 
case of NS cores with only nucleons & the total thermal conductivity over the 
whole range of densities 

We find: 

²  Due to the deleptonization of the NS core because of the appearance of Σ-, neutrons 
dominate also the shear viscosity at high densities contrary to the case without 
hyperons where the lepton contribution dominates always this transport coefficient  

²  Althogh the p, Σ- & Λ contributions are small, these species are important in 
mediating the neutron mean free path  
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