On a quasi-bound state in the K^-np system caused by strong interactions

Nina V. Shevchenko

Nuclear Physics Institute, Řež, Czech Republic

STRANU workshop, 24.05.2021

(人間) とうき くうり

Interest to antikaon-nucleon systems: quasi-bound state in the K^-pp system [Y.Akaishi, T. Yamazaki, Phys. Rev. C65, 044005 (2002)] \rightarrow experimental and theoretical efforts with different results

- Quasi-bound states in $\bar{K}NN,$ spin 0 $(K^-pp/\bar{K^0}np)$ and $\bar{K}\bar{K}N$ systems binding energy and width
- No quasi-bound state in $\bar{K}NN,$ spin 1 $(K^-np/\bar{K^0}nn)$ proven
- Near-threshold scattering in $\bar{K}NN$, spin 1 (K^-d) (Faddeev-type AGS equations with coupled $\bar{K}NN - \pi\Sigma N$ channels)
- 1s level shift and width of kaoninc deuterium (Faddeev-type equations with directly included Coulomb interaction)

[N.V. S., Three-Body Antikaon-Nucleon Systems, Few Body Syst. 58, 6 (2017)]

(日) (四) (三) (三) (三)

"Strong" quasi-bound state in K^-np - previous results

No quasi-bound state in $\bar{K}NN,$ spin 1 (K^-np) - proven

 K^-np quasi-bound state caused by strong interactions: \leftrightarrow kaonic deuterium (an atom, Coulomb is the main interaction, is known)

<u>Evidence</u>

Faddeev calculations of the K^-d scattering length a_{K^-d} – evidence that a "strong" quasi-bound state in K^-np could exists:

- Analytical continuation of the effective range formula below the K^-d threshold $\rightarrow K^-np$ quasi-bound state with binding energy 14.6 – 19.6 MeV, width 15.6 – 22.0 MeV should exist
- Systematic search for these states using three-body coupled-channel AGS equations \rightarrow no (corresponding) poles in the complex energy plane

<u>The reason of discrepancy</u>: effective range formula is valid in the vicinity of the corresponding threshold (*expected large binding energy and width - out of the validity region*)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

"Strong" quasi-bound state in K^-np - previous results

Strength constant of $V_{\bar{K}N-\pi\Sigma}$ changed by hands:

$$\lambda_{I=0}^{\bar{K}N,\bar{K}N} \to c \, \lambda_{I=0}^{\bar{K}N,\bar{K}N}, \, c = 1.25..1$$

Fig: Pole trajectories in the K^-np system for increasing absolute value of the $\lambda_{I=0}^{\bar{K}\bar{K}}$ strength constant of the phenomenological $V_{\bar{K}N-\pi\Sigma}^{1,SIDD}$ and $V_{\bar{K}N-\pi\Sigma}^{2,SIDD}$ potentials. The numbers along the trajectories indicate the multiplication factors. Quasi-bound states are the poles to the left of the K^-d threshold.

Next step – four-body calculations of the $\bar{K}NNN$ system using Faddeev-type equations. New NN potential constructed and used (V_{NN} by P. Doleschall was used before) \rightarrow quasi-bound state in the K^-np subsystem caused by strong interactions was found

・ロト ・ 同ト ・ ヨト ・ ヨト

New NN potential

Two-term Separable New potential (TSN) of nucleon-nucleon interaction

$$V_{NN}^{\text{TSN}}(k,k') = \sum_{m=1}^{2} g_m(k) \lambda_m g_m(k'),$$

$$g_m(k) = \sum_{n=1}^{3} \frac{\gamma_{mn}}{(\beta_{mn})^2 + k^2}, \text{ for } m = 1, 2$$

fitted to Argonne V18 potential [R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995)] phase shifts

Triplet and singlet scattering lengths a and effective ranges $r_{\rm eff}$

$$\begin{aligned} a_{np}^{\text{TSN}} &= -5.400\,\text{fm}, & r_{\text{eff},np}^{\text{TSN}} = 1.744\,\text{fm} \\ a_{pp}^{\text{TSN}} &= 16.325\,\text{fm}, & r_{\text{eff},pp}^{\text{TSN}} = 2.792\,\text{fm}, \end{aligned}$$

deuteron binding energy $E_{deu} = 2.2246$ MeV.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Fig: Phase shifts of np and pp scattering calculated using the new V_{NN}^{TSN} and $V_{NN}^{\text{TSA-B}}$ potentials plus phase shifts of Argonne V18

< ∃⇒

3 ×

< 🗇 🕨

э

Antikaon-nucleon interaction

Three potentials

- phenomenological $\bar{K}N \pi\Sigma$ with one-pole $\Lambda(1405)$ resonance
- phenomenological $\bar{K}N \pi\Sigma$ with two-pole $\Lambda(1405)$ resonance
- chirally motivated $\bar{K}N \pi\Sigma \pi\Lambda$ potential, two-pole $\Lambda(1405)$

reproduce (with the same level of accuracy):

- 1s level shift and width of kaonic hydrogen (SIDDHARTA) direct inclusion of Coulomb interaction, no Deser-type formula used
- $\bullet~{\rm Cross-sections}~{\rm of}~K^-p\to K^-p~{\rm and}~K^-p\to MB$ reactions
- Threshold branching ratios γ , R_c and R_n
- $\Lambda(1405)$ resonance (one- or two-pole structure) $M^{PDG}_{\Lambda(1405)} = 1405.1^{+1.3}_{-1.0} \text{ MeV}, \ \Gamma^{PDG}_{\Lambda(1405)} = 50.5 \pm 2.0 \text{ MeV} \ [PDG (2016)]$

Kaonic hydrogen: theory vs. experiment

Fig: Experimental and theoretical 1s level shift and width of kaonic hydrogen given by the three $\bar{K}N$ potentials

3

< (T) >

K^-p cross-sections: theory vs. experiment

Fig: Comparison with the experimental data on K^-p cross-sections (phenomenological and chirally motivated potentials)

A (1) > 4

3 ×

B >

K^-p cross-sections: theory vs. experiment

Nina V. Shevchenko

11 / 17

Table: Strong poles ($\Lambda(1405)$) given by the three antikaon-nucleon potentials (MeV)

	$z_{ m pole1}$	$z_{ m pole2}$	
$V_{\bar{K}N}^{1,\mathrm{SIDD}}$	1426 - i48	—	
$V_{\bar{K}N}^{2,\mathrm{SIDD}}$	1414-i58	1386-i104	
$V_{\bar{K}N}^{\rm Chiral}$	1417 - i33	1406 - i89	

"Experimental" value:

 $M_{\Lambda(1405)}^{PDG} = 1405.1_{-1.0}^{+1.3} \text{ MeV}, \Gamma_{\Lambda(1405)}^{PDG} = 50.5 \pm 2.0 \text{ MeV}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Strong pole(s) $\leftrightarrow \Lambda(1405)$ resonance

Fig: Elastic $\pi^0 \Sigma^0$ cross-sections of the chirally motivated potential $V_{\bar{K}N}^{\text{Chiral}} - \Lambda(1405)$ resonance.

э

< 🗇 🕨

Three-body equations with coupled $\bar{K}NN - \pi \Sigma N$ channels

Three-body Faddeev-type Alt-Grassberger-Sandhas equations, solved separtely

$$U_{ij}^{\alpha\beta} = \delta_{\alpha\beta} \left(1 - \delta_{ij} \right) \left(G_0^{\alpha} \right)^{-1} + \sum_{k,\gamma=1}^{3} (1 - \delta_{ik}) T_k^{\alpha\gamma} G_0^{\gamma} U_{kj}^{\gamma\beta}, \quad i, j = 1, 2, 3,$$

particle channels:

 $\alpha = 1 : |\bar{K}_1 N_2 N_3\rangle, \, \alpha = 2 : |\pi_1 \Sigma_2 N_3\rangle, \, \alpha = 3 : |\pi_1 N_2 \Sigma_3\rangle$

Input: two-body *T*-matrices, corresponding to $V_{\bar{K}N-\pi\Sigma(-\pi\Lambda)}$ (three versions), V_{NN}^{TSN} (new), $V_{\Sigma N(-\Lambda N)}$ (isospin-dependent and spin-independent, parameters fitted to experimental cross-sections)

Quantum numbers:

spin S = 1, orbital momentum L = 0, isospin I = 1/2:

- $\bar{K}NN$ system with $J^{\pi} = 1^{-}$ (isospin representation)
- $K^- np/\bar{K^0}nn$ system (particle representation)

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Results: K^-np quasi-bound state

Table: Binding energy B_{K^-np} (MeV) and width Γ_{K^-np} (MeV) of the quasi-bound state in the K^-pn system: coupled-channel $\bar{K}NN - \pi\Sigma N$ calculation and one-channel $\bar{K}NN$ with exact optical $V_{\bar{K}N}^{\text{Opt}}$; $z_{th,K^-d} = m_{\bar{K}} + 2 m_N + E_{\text{deu}}$.

	Coupled-channels calculation		With exact optical $\bar{K}N$ potential	
	B_{K^-np}	Γ_{K^-np}	B_{K^-np}	Γ_{K^-np}
$V_{\bar{K}N}^{1,\mathrm{SIDD}}$	_	_	0.8	68.3
$V_{\bar{K}N}^{2,\mathrm{SIDD}}$	0.9	59.4	3.8	63.2
$V_{\bar{K}N}^{\rm Chiral}$	1.3	41.8	0.9	43.6

[N.V. S., Few Body Syst. 61, 27 (2020)]

イロト 不同 とくほと 不同 とう

Table: Binding energy B_{K^-pp} (MeV) and width Γ_{K^-pp} (MeV) of the quasi-bound state in the K^-pp system: coupled-channel $\bar{K}NN - \pi\Sigma N$ calculation and one-channel $\bar{K}NN$ with exact optical $V_{\bar{K}N}^{\text{Opt}}$; $z_{th,K^-pp} = m_{\bar{K}} + 2 m_N$.

	Coupled channels calculation		With exact optical $\bar{K}N$ potential		Our previous coupled-channel results	
	B_{K^-pp}	Γ_{K^-pp}	B_{K^-pp}	Γ_{K^-pp}	B_{K^-pp}	Γ_{K^-pp}
$V_{\bar{K}N}^{1,\mathrm{SIDD}}$	52.18	67.1	53.29	63.3	53.29	64.9
$V_{\bar{K}N}^{2,\mathrm{SIDD}}$	46.56	51.2	46.65	47.4	47.45	49.8
$V_{\bar{K}N}^{\rm Chiral}$	29.43	46.4	30.01	46.6	32.24	48.6

・ロッ ・回 ・ ・ ヨ ・ ・ 日 ・

Summary

quasi-bound K^{-np} state caused by strong interactions was predicted,
its binding energy is small (1 - 2 MeV), while the width (40 - 60 MeV) is comparable with the width of the K⁻pp quasi-bound state

- the particular model of V_{NN} plays a minor role in the K^-pp system
- the same is true for the K^-np system, but since the quasi-bound state there is situated so close to the threshold, V_{NN} can resolve the question of the K^-np quasi-bound state existence
- the quasi-bound K^-np state caused by strong interactions is stronger bound and is much broader than kaonic deuterium, therefore, the atomic and the strong quasi-bound states cannot be misidentified

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・