ECT* May 24-28, 2021

"K-pp" Search in J-PARC E27 and E05

Tomofumi NAGAE

Kyoto University

Contents

Kaonic nuclei search in Inclusive spectra
KEK-PS E548 : ¹²C(K⁻, p/n)X
Search @ J-PARC

●E05: ¹²C(K⁻, p)X

• E27 : d(π+, K+)X,

●E15: ³He(K⁻,n)X,

d(π+, K+pp) ³He(K-,Λp)n

Summary

What's in the Neutron Star Core ?

(K-, N) Semi-Inclusive Spectrum

T. Kishimoto, Phys. Rev. Lett. 83 (1999) 4701-4704.

KEK-PS E548

Not Inclusive !

(K-, p/n) velocity of p/n \leftrightarrow TOF in the forward direction L~10 m

Start timing = prompt reaction

V.K. Magas et al., Phys. Rev. C 81 (2010) 024609.

Danger to compare theoretical calculations with the data

K-p reactions

- s-channel resonance @ I GeV/c
- K-p $\rightarrow \Lambda^*(1800) \rightarrow KN, \Sigma^*(1385)\pi, NK^*$
 - ~5mb/sr
 - Quasi Elastic : K-N \rightarrow NK-, high mom. N in FWD
 - One-body absorption : K-N $\rightarrow \pi \Sigma$
 - $\Lambda^* \rightarrow \Lambda \pi$; forbidden

■ Two-nucleon absorption : K-NN→YN/Y*N

These processes should overlap in the (K-,p) spectrum !

Y. Ichikawa et al., J = PARC E05 Prog. Theor. Exp. Phys. (2020) 123D01.

Real Inclusive measurement of proton ← Magnetic spectrometer, not TOF

¹²C(K-,p) at 1.8 GeV/c ~mb/sr, off-resonance

p(K-,p) spectrum

Larger inelastic scattering 1.8 GeV/c > 1 GeV/c

Theoretical Calcs.

T.Koike and T.Harada Few Body Syst. (2013) 117-122.

Coincidence Spectra

Imaginary is large \rightarrow Broad W₀=-40 MeV, V₀=-80 MeV

BK=90 MeV, Γ=100 MeV

Two-nucleon Absorption ?

Not enough to explain the excess

Fig. C.1. (a) Theoretical calculation with the optimum potential $(V_0, W_0) = (-80, -40)$ MeV. The black line displays the total spectrum. The solid lines in different colors show the subcomponents of the different proton holes, $1s_{1/2}$ or $1p_{3/2}$, and kaonic orbital states, *s* or *p*. (b) Magnified view of (a) to see the small cross section region.

E27: $d(\pi^+, K^+)$ reaction at 1.69 GeV/c

Yamazaki & Akaishi, Phys. Rev. C76 (2007) 045201.

$d(\pi^+, K^+) @1.69 GeV/C$

One-proton coincidence

Coincidence Probability(MM)

= One-proton coincidence(MM)/Inclusive(MM)

Enhancement near the ΣN threshold (2.13 GeV/c²)

Broad bump at ~2.28 GeV/c²

E15 fitting result

 $BK=42\pm3 + 3/-4 MeV$, $\Gamma=100\pm7+19/-9 MeV$

Compactness of K-pp?

25

 $\sigma^{tot} \cdot BR_{\Lambda p} = 9.3 \pm 0.8 + 1.4 / -1.0 \ \mu b$

 $BR_{\Lambda p}/BR_{\Sigma 0p} \sim 1.7$

Summary 1

- Inclusive Spectra :
 - ${}^{12}C(K-, p)$ measured in E05 for the first time.
 - (V₀, W₀)=(-80, -40) MeV
 - (K-,N) semi-inclusive (not inclusive) E548(p/n) and E15(n)
 - A tail in the bound region. Consistent with E05 and Theory
 - \rightarrow A bound state but broad.
 - →Should have a large cross section ~ as QF KN
 - E27: $d(\pi^+, K^+)$; QF Λ^* production \rightarrow 30 MeV shift

Summary 2

- Coincidence Spectra :
 - E27: $d(\pi^+, K^+pp)$; B=95+18/-17 MeV, Γ =162+87/-45 MeV
 - $\Lambda(1405)$ p bound state ?
 - EI5: ³He(K-, Λp)n; B=42±3 MeV, Γ=100±7 MeV, σ•BR=9.3±0.8 μb
 - →Small fraction of Inclusive production cross section 10 µb < 1mb

E05 - E15 - E27

- E05 (K,p); QF-K incl. + QF-A* Incl. +DB-A* Incl. \sim E15 (K,n) semi-incl. (background limited)
- E27 (π ,K); QF- Λ * Incl.+DB- Λ * (Σ ⁰p decay)
- E15 (K,Λp)n ; QF-K + QF Λ*

