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Emanuele Pace – Università di Roma “Tor Vergata” and INFN, Roma Tor

Vergata, Italy

Alessio Del Dotto – INFN, Roma, Italy and TJLAB, USA

Matteo Rinaldi – Departamento de Fı̀sica Teòrica-IFIC, Universidad de
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Outline

A relativistic treatment to accurately describe the nuclear structure is needed

JLab program @ 12 GeV :

DIS - Structure functions in 3H and 3He nuclei MARATHON Coll. E12-10-103

SIDIS - Asymmetries : H. Gao et al, PR12-09-014; J.P. Chen et al, PR12-11-007

A Poincarè covariant spectral function for 3He within the light-front (LF) dynamics

Del Dotto, Pace, Salmè, Scopetta, Physical Review C 95, 014001 (2017)

E. P., A. Del Dotto, L. Kaptari, M. Rinaldi, G. Salmè, S. Scopetta

Few Body Syst. 54 (2013) 1079; Few Body Syst. 56 (2015) 425; Few-Body Syst. 57 (2016) 601

EMC effect in 3He with the LF spectral function : preliminary results

Relation between the LF spectral function and the correlator in valence

approximation

The six T-even transverse momentum distributions (TMDs) : there are approximate

relations between the TMDs ?

Conclusions and Perpectives
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Why a relativistic treatment ?

JLAB experiments @12 GeV

The Standard Model of Few-Nucleon Systems, where nucleon and pion degrees of

freedom are taken into account, has achieved a very high degree of sophistication.

Nonetheless, one should try to fulfill, as much as possible, the relativistic

constraints, dictated by the covariance with respect the Poincaré Group, GP , when

processes involving nucleons with high 3-momentum are considered and a high

precision is needed.

This is the case if one studies, e.g., i) the nucleon structure functions (unpolarized

and polarized); ii) the nucleon TMDs, iii) signatures of short-range correlations; iv)

SIDIS processes.

At least, one should carefully deal with the boosts of the nuclear states, |Ψinit〉
and |Ψfin〉!
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Poincaré covariance and locality

General principles to be implemented

⋆ Extended Poincaré covariance - Commutation rules between the generators

[Pµ, P ν ] = 0, [Mµν , P ρ] = −ı(gµρP ν − gνρPµ),

[Mµν ,Mρσ] = −ı(gµρMνσ + gνσMµρ − gµσMνρ − gνρMµσ)

P and T have to be taken into account !

⋆ ⋆ Macroscopic locality (≡ cluster separability): i.e. observables associated with

different space-time regions must commute in the limit of large spacelike separation,

rather than for arbitrary (µ-locality) spacelike separations (Keister-Polyzou, Adv. Nucl.

Phys. 20, 225 (1991)). When a system is separated into disjoint subsystems by a

sufficiently large spacelike separation, then the subsystems behave as independent

systems.

Adopted Tool: The Dirac Relativistic Hamiltonian Dynamics in the light-front form

P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949)
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Poincarè covariance

Relativistic Hamiltonian Dynamics

The Relativistic Hamiltonian Dynamics (RHD) of an interacting system, introduced by

Dirac, plus the Bakamijan-Thomas (BT) construction of the Poincaré generators (Phys.

Rev. 92, 1300 (1953)) allow one to generate a description of DIS, SIDIS, DVCS which :

is fully Poincaré covariant

has a fixed number of on-mass-shell constituents

The Light-Front form of RHD is adopted. It has :

i) 7 kinematical generators; the kinematic subgroup is the set of transformations that

leave the light front x+ = 0 invariant,

ii) a subgroup structure of the LF boosts,

iii) and a meaningful Fock expansion.

It allows one to take advantage of the whole successfull non-relativistic

phenomenology for the nuclear interaction

DIS and SIDIS are sitting on the light cone

A Light-Front spin-dependent Spectral Function can be defined to describe DIS and

SIDIS processes. It implements macroscopic locality (≡ cluster separability).
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Light-Front Hamiltonian Dynamics (LFHD)

Among the possible forms of RHD, the Light-Front one has several advantages:

7 Kinematical generators: i) three LF boosts (at variance with the dynamical nature

of the Instant-form boosts), ii) P̃ = (P+,P⊥), iii) Rotation around the z-axis.

The LF boosts have a subgroup structure : then one gets a trivial separation of the

intrinsic motion (as in the non-relativistic case). Separation of intrinsic and global

motion is important to correctly treat the boost between initial and final states !)

P+ ≥ 0 leads to a meaningful Fock expansion.

No square root in the dynamical operator P−, propagating the state in the LF-time.

The infinite-momentum frame (IMF) description of DIS is easily included.

Drawback: the transverse LF-rotations are dynamical

However, using the BT construction, one can define a kinematical, intrinsic angular

momentum (very important for us!) .
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Bakamjian-Thomas construction and the

Light-Front Hamiltonian Dynamics

An explicit construction of the 10 Poincaré generators, in presence of interactions,

was given by Bakamjian and Thomas (PR 92 (1953) 1300).

The key ingredient is the mass operator :

i) only the mass operator M contains the interaction;

ii) it generates the dependence upon the interaction of the three dynamical

generators in LFHD, namely P− and the LF transverse rotations ~F⊥ ;

The mass operator is the free mass, M0, plus an interaction V , or M2
0 + U .

The interaction, U or V , must commute with all the kinematical generators, and

with the non-interacting angular momentum, as in the non-relativistic case.

For the two-body case, it allows one to easily embed the NR phenomenology:

i) the mass equation for the bound state, e.g. the deuteron,

[M2
0 (12) + U ] |ψD〉 =

[
4m2 + 4k2 + U

]
|ψD〉 = M2

D |ψD〉 = [2m−BD ]2 |ψD〉

becomes the Schr. eq.
[
4m2 + 4k2 + 4m V NR

]
|ψD〉 =

[
4m2 − 4mBD

]
|ψD〉

with the identification of U and 4mV NR and disregarding (BD/2m)2 .

ii) The eigensolutions of the mass equation for the continuum are identical to the

solutions of the Lippmann-Schwinger equation.
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The BT Mass operator for A=3 nuclei - I

For the three-body case the mass operator is

MBT (123) =M0(123) + V BT
12,3 + V BT

23,1 + V BT
31,2 + V BT

123

where

M0(123)=
√
m2 + k21 +

√
m2 + k22 +

√
m2 + k23 is the free mass operator,

ki (i = 1− 3) are momenta in the intrinsic reference frame, i.e. the rest frame for

a system of free particles: ki = L−1
f (P/M0) pi k1 + k2 + k3 = 0

V BT
123 is a short-range three-body force

Final remark: the commutation rules impose to V BT analogous properties as the

ones of V NR, with respect to the total 4-momentum and to the total angular

momentum.

The full theory must fulfill the macroscopic locality. This property can be

implemented by using interaction-dependent, unitary operators: the packing

operators (Sokolov, Theor. Mat. Fiz. 36 (1978) 355).
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The BT Mass operator for A=3 nuclei - II

The NR mass operator is written as

MNR = 3m+
∑

i=1,3

k2i
2m

+ V NR
12 + V NR

23 + V NR
31 + V NR

123

and must obey to the commutation rules proper of the Galilean group, leading to

translational invariance and independence of total 3-momentum.

Those properties are analogous to the ones in the BT construction. This allows us to

consider the standard non-relativistic mass operator as a sensible BT mass operator,

and embed it in a Poincaré covariant approach.

MBT (123) = M0(123) + V BT
12,3 + V BT

23,1 + V BT
31,2 + V BT

123 ∼ MNR

The 2-body phase-shifts contain the relativistic dynamics, and the Lippmann-Schwinger

equation, like the Schrödinger one, has a suitable structure for the BT construction.

Therefore what has been learned till now about the nuclear interaction, within a

non-relativistic framework, can be re-used in a Poincaré covariant framework.

The eigenfuntions of MNR do not fulfill the cluster separability, but we take care of

macrocausality in the spectral function.
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To complete the matter: the spin

Coupling spins and orbital angular momenta is easily accomplished in the Instant

Form of RHD (kinematical hyperplane t=0) through Clebsch-Gordan coefficients,

since in this form the three rotation generators are independent of interaction.

To embed this machinery in the LFHD one needs unitary operators, the so-called

Melosh rotations that relate the LF spin wave function and the canonical one. For a

particle of spin (1/2) with LF momentum k̃ ≡ {k+, ~k⊥}

|k; s, σ〉c =
∑

σ′

D
1/2
σ′,σ

(RM (k̃)) |k̃; s, σ′〉LF

where

D
1/2
σ′,σ

(RM (k̃)) is the standard Wigner function for the J = 1/2 case ,

RM (k̃) is the rotation between the rest frames of the particle reached through a

LF boost or a canonical boost, starting from the same Pauli-Lubanski vector.

D
1
2 [RM (k̃)]σσ′ = χ†

σ

m+ k+ − ıσ · (ẑ × k⊥)√
(m+ k+)2 + |k⊥|2

χσ′ = LF 〈k̃; sσ|k; sσ′〉c ,

χσ is a two-dimensional spinor. To use the Clebsch-Gordan coefficients to couple

angular momenta in LFHD one has to exploit the relation with the canonical spin.

A Poincaré Covariant Light-Front Spectral Function for the Study of Nuclear Structure – p.10/32



ECT
∗

- April 19
th

, 2018

The spin-dependent Spectral Function

The Spectral Function: probability distribution to find a particle with given 3-momentum

~p , and missing energy E inside a bound system.

For a system polarized along the polarization vector S in a NR framework

P τ
σ,σ′,M(~p,E) =

∑

f(A−1)

〈~p, στ ;ψf(A−1)
|ψA

JM〉 〈ψA
JM|ψf(A−1)

; ~p, σ′τ〉 δ(E − Ef(A−1)
+ EA)

|ψA
JM〉: ground state, eigensolution of

MNR
A |ψA

JM〉 = EA |ψA
JM〉 with |ψA

JM〉S =
∑

m

|ψJm〉z DJ
m,M(α, β, γ)

α, β and γ Euler angles of the rotation from the z-axis to the polarization vector S

|ψf(A−1)
〉: a state of the (A− 1)-particle spectator system: fully interacting !

MNR
(A−1) |ψf(A−1)

〉 = Ef(A−1)
|ψf(A−1)

〉

|~p, στ〉 plane wave with momentum ~p in the system rest frame and spin along z

equal to σ

NR overlaps 〈~p, στ ;ψf(A−1)
|ψA

JM〉 with the same interaction in A and A− 1
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LF Spectral Function for three-body systems

A. Del Dotto, E. Pace, G. Salmè, S. Scopetta, Physical Review C 95, 014001 (2017)

Pτ1
σ′σ

(κ̃, ǫ, S) = ρ(ǫ)
∑

JJzα

∑

Tτ

LF 〈τT ;α, ǫ; JJz ; τ1σ′, κ̃|Ψ0;STz〉 〈STz ; Ψ0|κ̃, στ1; JJz ; ǫ, α;Tτ〉LF

ρ(ǫ) ≡ density of the t-b states: 1 for the bound state, and m
√
mǫ/2 for the excited ones

|Ψ0;SzTz〉 = |j, jz ; ǫ3; 1
2
Tz〉 three-body bound eigenstate of MBT (123) ∼MNR

LF 〈σ1, σ2, σ3; τ1, τ2, τ3; k̃1, k̃23|Ψ0;SzTz〉 =
∑

σ′

1σ
′

2σ
′

3

D
1
2 [RM (k̃1)]σ1σ

′

1
D

1
2 [RM (k̃2)]σ2σ

′

2

× D
1
2 [RM (k̃3)]σ3σ

′

3

√
(2π)6 2E1E23M23

2M0(1, 2, 3)
〈σ′

1, σ
′
2, σ

′
3; τ1, τ2, τ3;k1,k23|j, jz ; ǫ3;

1

2
Tz〉

k̃i momenta in the intrinsic reference frame of three free particles with free mass

M0(1, 2, 3) = E1+

√
M23

2 + |k1|2 E1 =
√
m2 + |k1|2 M23 = 2

√
(m2 + |k23|2)

k̃23 momentum for the internal motion of the pair (23) E23 =
√
M23

2 + k21

D
1
2 [RM (k̃)]σσ′ Melosh operator
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LF Spectral F. for three-body systems II

A. Del Dotto, E. Pace, G. Salmè, S. Scopetta, Physical Review C 95, 014001 (2017)

|κ̃, στ1; JJz; ǫ, α;Tτ〉LF tensor product of a plane wave for particle 1 with LF

momentum κ̃ in the intrinsic reference frame of the [1 + (23)] cluster times the

fully interacting state of the (23) pair of energy eigenvalue ǫ. As shown by Keister

and Polyzou such a state fulfills the macrocausality. It is eigenstate of the mass

operator M ′(1, 23) = E(κ) +
√
M2

23(|k23|) + U23 + |κ|2 with eigenvalue

M0(1, 23) =
√
m2 + |κ|2 + ES ES =

√
M2

S + |κ|2 MS = 2
√
m2 +mǫ

k⊥ = κ⊥, k+ = ξ M0(123) = κ+ M0(123)/M0(1, 23)

The state |k̃, στ1; JJz ; ǫ, α;Tτ〉LF does not fulfill the macrocausality

LF 〈Tτ ;α, ǫ; JJz ; τ1σ, κ̃|j, jz ; ǫ3;
1

2
Tz〉 =

∑

τ2τ3

∫
dk23

∑

σ′

1

D
1
2 [RM (k̃)]σσ′

1
×

√
(2π)3 2E(k)

√
κ+E23

k+ES

∑

σ′′

2 ,σ′′

3

∑

σ′

2,σ
′

3

Dσ′′

2 ,σ′

2
(k̃23, k̃2) Dσ′′

3 ,σ′

3
(−k̃23, k̃3)×

NR〈T, τ ;α, ǫ; JJz |k23, σ
′′
2 , σ

′′
3 ; τ2, τ3〉 〈σ′

3, σ
′
2, σ

′
1; τ3, τ2, τ1;k23,k|j, jz ; ǫ3;

1

2
Tz〉NR

Dσ′′

i
,σ′

i
(±k̃23, k̃i) =

∑

σi

D
1
2 [R†

M (±k̃23)]σ′′

i
σi
D

1
2 [RM (k̃i)]σiσ

′

i
+ ↔ i = 2; − ↔ i = 3
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Momentum distribution, normalization, and

momentum sum rule Del Dotto et al., PR C 95 (2017)

The LF spin-independent nucleon momentum distribution, averaged on the spin, is

nτ (ξ,k⊥) =
∑

σ

∑

τ ′

2τ
′

3

∑

σ′

2,σ
′

3

∫
dk23

E(k) E23

(1− ξ) k+

∣∣∣∣〈σ
′
3, σ

′
2, σ; τ

′
3, τ

′
2, τ ;k23,k|j, jz ; ǫ3;

1

2
Tz〉

∣∣∣∣
2

where k+ = ξ M0(1, 2, 3). From the normalization of the Spectral Function one has

∫ 1

0
dξ fAτ (ξ) = 1 fAτ (ξ) =

∫
dk⊥ nτ (ξ,k⊥)

Then one obtains

NA =
1

A

∫
dξ

[
ZfAp (ξ) + (A− Z)fAn (ξ)

]
= 1

MSR =
1

A

∫
dξ ξ

[
ZfAp (ξ) + (A− Z)fAn (ξ)

]
=

1

A

By using the 3He wave function, corresponding to the NN interaction AV18, that was

evaluated by Kievsky, Rosati and Viviani (Nucl. Phys. A551, 241 (1993)) we obtain

MSRcalc = 0.333

Namely, within LFHD normalization and momentum sum rule do not conflict !!
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Hadronic Tensor and Nuclear Structure

Function F2

The hadronic tensor for an unpolarized nucleus reads

Wµν
A (PA, TAz) =

∑

N

∑

σ

∫∑
dǫ

∫
dκ⊥ dκ+

(2π)3 2 κ+
1

ξ
PN (κ̃, ǫ) wµν

N,σ(p, q)

with wµν
N,σ(p, q) the hadronic tensor for a single constituent. In the Bjorken limit the

nuclear structure function FA
2 can be obtained from the hadronic tensor as follows

FA
2 (x) =

∑

N

∑

σ

∫∑
dǫ

∫
dκ⊥ dκ+

(2π)3 2 κ+
1

ξ
PN (κ̃, ǫ) (−x) gµν wµν

N,σ(p, q) =

=
∑

N

∑

στ

∫∑
dǫ

∫
dκ⊥ dκ+

(2π)3 2 κ+
Pτ (κ̃, ǫ)

P+
A

p+
Q2

2PA · q
2p · q
Q2

FN
2 (z)

where x = Q2

2PA·q
is the Bjorken variable, z = Q2

2p·q
, ξ = κ+

M0(1,23)
and

FN
2 (z) = −z gµν wµν

N,σ(p, q) the nucleon structure function .

One cannot integrate on ǫ to obtain the momentum distribution because ξ depends on ǫ.

We used the Pisa group wave function to evaluate RA
2 (x) =

A FA
2 (x)

Z F p
2 (x) + (A− Z) Fn

2 (x)
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Preliminary Results for 3
He EMC effect

The contribution from the 2B channel with the spectator pair in a deuteron state

Solid line: calculation with the LF Spectral Function.

Dashed line: as the solid one, but with
√
k̄223 = 136.37MeV for the deut. (AV18)

Dotted line: convolution formula with a momentum distribution as in Oelfke, Sauer,

Coester, Nucl. Phys. A 518, 593 (1990) - only two-body contribution

Improvements clearly appear with respect to the convolution result. The next step will be

the full calculation of the EMC effect for 3He, including the exact 3-body contribution. !
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LF spin-dependent Spectral Function in

terms of scalars

The LF spin-dependent spectral function for a system polarized along S, can be

obtained in terms of the available vectors, i.e. the unit vector ẑ of the z axis, the

polarization vector S, and the transverse (with respect to the z axis) momentum

component k⊥ = p⊥ = κ⊥ of the momentum p of one of the constituents,

Pτ
M,σ′σ(κ̃, ǫ, S) =

1

2

[
Bτ
0,M + σ ·Fτ

M(κ̃, ǫ,S)
]

σ′σ

The scalar Bτ
0,M = Tr

[
Pτ
M,σ′σ

(κ̃, ǫ, S)
]

yields the unpolarized spectral function ;

the pseudovector Fτ
M(κ̃, ǫ,S) = Tr

[
P̂

τ
M(κ̃, ǫ, S) σ

]
can be written as a linear

combination of the available pseudovectors,

FM(ξ,k⊥; ǫ,S) = S B1,M + k̂⊥ (S · k̂⊥) B2,M + k̂⊥ (S · ẑ) B3,M

+ ẑ (S · k̂⊥) B4,M + ẑ (S · ẑ) B5,M +
(
k̂⊥ × ẑ

) [(
k̂⊥ × ẑ

)
· S

]
B6,M

where any angular dependence is explicitely given.

The seven scalar quantities Bi,M = Bi,M

[
|k⊥|, ξ, ǫ, (S · k̂⊥)2, (S · ẑ)2

]
(i = 0, 1, ..., 6)

can depend on the possible scalars, i.e., |k⊥|, ξ, ǫ, (S · k̂⊥)2, (S · ẑ)2.
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LF spin-dependent momentum distribution I

A. Del Dotto, E. Pace, G. Salmè, S. Scopetta, Physical Review C 95, 014001 (2017)

If the LF spectral function times the constant c = (πES)/(2mκ
+) is integrated on p−,

i.e., on the intrinsic energy ǫ of the (A− 1) system, then the LF spin-dependent

momentum distribution N τ
M(x,k⊥;S) (a 2× 2 matrix) is obtained

N τ
M(x,k⊥;S) =

1

2

∫
dp+dp−

(2π)4
δ[p+ − xP+] P+c Pτ

M(κ̃, ǫ, S)

=
1

2

∫∑
dǫ

1

(2π)4
4m

P+ − p+
P+ π

2m

ES

κ+
Pτ

M(κ̃, ǫ, S)

=

∫∑
dǫ

1

2 (2π)3
1

1− x

ES

κ+
Pτ

M(κ̃, ǫ, S) p+ = x P+ κ+ = xM0[1, (23)]

The constant c is introduced to fulfill the normalization of the momentum distribution

∫
dξ

∫
dk⊥ Tr [ N τ

M(x,k⊥;S) ] = 1 .

As it occurs for the spectral function, the LF spin-dependent momentum distribution

N τ
M(x,k⊥;S) can be expressed through the three independent vectors available in the

rest frame of the system, i.e. k⊥, S, and the unit vector of the z axis, ẑ.
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LF spin-dependent momentum distribution II

The LF spin-dependent momentum distribution N τ
M(x,k⊥;S) can be expressed

through the three independent vectors available in the rest frame of the system,

k⊥, S, and ẑ

nτ
σ′σ(x,k⊥;M,S) = [N τ

M(x,k⊥;S)]σ′σ =
1

2

{
b0,M + σ · fM(x,k⊥;S)

}
σ′σ

fM(x,k⊥;S) is a pseudovector depending upon the vector k⊥ and the peudovector S

fM(x,k⊥;S) = S b1,M + k̂⊥ (S · k̂⊥) b2,M + k̂⊥ (S · ẑ) b3,M
+ ẑ (S · k̂⊥) b4,M + ẑ (S · ẑ) b5,M +

(
k̂⊥ × ẑ

) [(
k̂⊥ × ẑ

)
· S

]
b6,M

The seven functions bi,M

[
|k⊥|, x, (S · k̂⊥)2, (S · ẑ)2

]
are integrals over the energy ǫ of

the functions Bi,M

[
|k⊥|, x, ǫ, (S · k̂⊥)2, (S · ẑ)2

]

bi,M

[
|k⊥|, x, (S · k̂⊥)2, (S · ẑ)2

]
=

∫∑ dǫ

2 (2π)3
1

1− x

ES

κ+
Bi,M

[
|k⊥|, x, ǫ, (S · k̂⊥)2, (S · ẑ)2

]

We now want to evaluate the functions bi,M .
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LF spin-dependent momentum distribution III

For a three-body system the integration of the spectral function on the energy ǫ of the

(23) pair gives

nτ
σσ′(x,k⊥;M,S) =

∑

m

Dj
m,M(α, β, γ)

∑

m′

[Dj
m′,M

(α, β, γ)]∗ Fmm′

σσ′ (x,k⊥, τ)

with Fmm′

σσ′ (x,k⊥, τ) =
1

(1− x)

∑

τ2τ3

∑

σ2,σ3

∫
dk23 E(k1)

E23

k+1

×
∑

σ′

1

D
1
2 [RM (k̃1)]σσ1 〈σ3, σ2, σ1; τ3, τ2, τ ;k23,k1|j, jz = m; ǫ3int,Π;

1

2
Tz〉

×
∑

σ̃1

D
1
2
∗[RM (k̃1)]σ′σ̃1

〈σ3, σ2, σ̃1; τ3, τ2, τ ;k23,k1|j, jz = m′; ǫ3int,Π;
1

2
Tz〉∗

with k1⊥ = k⊥ k+1 = x M0(1, 2, 3)

The Euler angles α, β, γ describe the rotation from the z axis to the polarization vector S

and 〈σ3, σ2, σ1; τ3, τ2, τ ;k23,k1|j, jz = m; ǫ3int;
1
2
Tz〉 is a three-body wave function in

momentum space.

From these equations expressions for the quantities bi,M

[
|k⊥|, x, (S · k̂⊥)2, (S · ẑ)2

]

(i = 0, 6) can be obtained and accurately evaluated in the case of 3He.

A Poincaré Covariant Light-Front Spectral Function for the Study of Nuclear Structure – p.20/32



ECT
∗

- April 19
th

, 2018

LF spin-dependent momentum distribution IV

The 3He wave function in momentum space can be written as follows

〈σ1, σ2, σ3; τ1, τ2, τ3;k23,k1|3He;
1

2
m;

1

2
Tz〉 =

∑

l23µ23

∑

LρMρ

Yl23µ23
(k̂23) YLρMρ (k̂1)

×
∑

T23,τ23

〈1
2
τ2

1

2
τ3|T23τ23〉 〈T23τ23

1

2
τ1|

1

2
Tz〉

∑

XMX

∑

j23m23

〈XMXLρMρ|
1

2
m〉 〈j23 m23

1

2
σ1|XMX〉

×
∑

s23σ23

〈1
2
σ2

1

2
σ3|s23σ23〉 〈l23µ23s23σ23|j23 m23〉 Gj23l23s23

LρX
(k23, k1)

with

G
j23l23s23
LρX

(k23, k1) =
2(−1)

l23+Lρ
2

π

∫
r2dr jl23 (k23r)

∫
ρ2 dρ jLρ (k1ρ) φ

j23l23s23
LρX

(|r|, |ρ|) .

Then one obtains

nτ
σσ′ (x,k⊥;M,S) =

=
2(−1)M+1/2

(1− x)

∫
dk23

{
Zτ

σσ′ (x,k⊥, k23, L = 0,S) + Zτ
σσ′ (x,k⊥, k23, L = 2,S)

}

where L is the orbital angular momentum of the one-body off-diagonal density matrix.

The quantities Zτ
σσ′ contain Clebsh-Gordan, 6-j and 9-j coefficients and G

j23l23s23
LρX

.
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Correlator

Let p be the momentum in the laboratory frame of an off-mass-shell fermion, with isospin

τ , inside a bound system of A fermions with total momentum P and spin S. The fermion

correlator in terms of the LF coordinates is [Barone, Drago, Ratcliffe, Phys. Rep. 359, 1

(2002)]

Φτ
α,β(p, P, S) =

1

2

∫
dξ−dξ+dξT e

ip−ξ+

2 e
ip+ ξ−

2 e−ipT ·ξT

〈
P, S,A|ψ̄τ

β(0)ψ
τ
α(ξ)|A,S, P

〉

where |A,S, P 〉 is the A-particle state and ψτ
α(ξ) the particle field (e.g. a nucleon of

isospin τ in a nucleus, or in valence approximation a quark in a nucleon).

The particle contribution to the correlation function from on-mass-shell fermions, i.e. the

result obtained if the antifermion contributions are disregarded, is

Φτp(p, P, S) =
( /pon + m)

2m
Φτ (p, P, S)

( /pon + m)

2m
=

=
1

4m2

∑

σ

∑

σ′

u(p̃, σ′) ū(p̃, σ′) Φτ (p, P, S) u(p̃, σ) ū(p̃, σ)
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Correlator and Light-Front spin-dependent

Spectral Function

Through lengthy but straightforward calculations it can be shown that a relation exists

between the correlator in valence approximation and the spin-dependent LF spectral

function

Φτp
α,β(p, P, S) =

2π (P+)2

(p+)2 4m

ES

M0[1, (23)]

∑

σσ′

{
uα(p̃, σ

′) Pτ
M,σ′σ(κ̃, ǫ, S) ūβ(p̃, σ)

}

It has to be stressed that when deriving this expression it naturally appears the

momentum κ̃ in the intrinsic reference frame of the cluster [1,(23)], where particle 1

is free and the (23) pair is fully interacting.

The normalization condition for the particle correlator is

∫
d4p

(2π)4
1

2P+
Tr(γ+Φτp(p, P, S)) =

1

2P+

1

2

1

(2π)4

∫
dp−dp+dp⊥ Tr(γ+Φτp(p, P, S)) = 1
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Correlator and Transverse Momentum

Distributions

Let us summarize the relations between the correlation function and the six T-even

TMD’s as presented in Barone, Drago, Ratcliffe, Phys. Rep. 359, 1 (2002).

The correlation function at the leading twist is given by

Φ(p, P, S) =
1

2
/P A1 +

1

2
γ5 /P

[
A2 Sz +

1

M
Ã1 p⊥·S⊥

]
+

+
1

2
/P γ5

[
A3 /S⊥ + Ã2

Sz

M
/p⊥ +

1

M2
Ã3 p⊥·S⊥ /p⊥

]

where M is the mass of the system. If only the contribution to the correlation function

from on-mass-shell fermions is retained, i.e. the full correlation function Φ(p, P, S) is

approximated by Φp(p, P, S), one can write

1

2P+
Tr(γ+Φ) ∼ 1

2P+
Tr(γ+Φp) = AV

1

1

2P+
Tr(γ+γ5Φ) ∼ 1

2P+
Tr(γ+γ5Φ

p) = Sz A
V
2 +

1

M
p⊥·S⊥ ÃV

1

1

2P+
Tr(iσi+γ5Φ) ∼ − 1

2P+
Tr(γiγ+γ5Φ

p) = Si⊥ AV
3 +

Sz

M
pi⊥ ÃV

2 +
p⊥·S⊥

M2
pi⊥ ÃV

3

where AV
j , Ã

V
j are the valence approximations for Aj , Ãj (j = 1, 2, 3).
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Correlator and LF Spectral Function I

The traces of Φp can be expressed by traces of the spectral function :

Tr(γ+Φp) = D Tr
[
P̂M(κ̃, ǫ,S)

]
D =

(P+)2

p+
π

m

ES

M0[1, (23)]

Tr(γ+γ5 Φp) = D Tr
[
σz P̂M(κ̃, ǫ,S)

]

Tr(/p⊥ γ+ γ5 Φp) = D Tr
[
p⊥ · σ P̂M(κ̃, ǫ, S)

]

Then one obtains AV
1 = c B0,M c =

π

2m

ES

κ+

Sz A
V
2 +

1

M
p⊥·S⊥ ÃV

1 = c
[
Sz B1,M + (S · k̂⊥) B4,M + (S · ẑ) B5,M

]

SxA
V
3 +

Sz

M
px Ã

V
2 +

p⊥·S⊥

M2
px Ã

V
3 =

c

[
Sx B1,M +

kx

k⊥
(S · k̂⊥) B2,M +

kx

k⊥
(S · ẑ) B3,M +

ky

k⊥

[(
k̂⊥ × ẑ

)
· S

]
B6,M

]

SyA
V
3 +

Sz

M
py Ã

V
2 +

p⊥·S⊥

M2
py Ã

V
3 =

c

[
Sy B1,M +

ky

k⊥
(S · k̂⊥) B2,M +

ky

k⊥
(S · ẑ) B3,M − kx

k⊥

[(
k̂⊥ × ẑ

)
· S

]
B6,M

]
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Transverse Momentum Distributions I

Integration on p+ and p− : 1
2

∫ dp+dp−

(2π)4
δ[p+ − xP+] P+ of the above

equations gives the following relations between the TMDs and the quantities bi,M

f(x, |p⊥|2) = b0

Sz ∆f +
1

M
p⊥·S⊥ g1T = Sz b1,M + (S · k̂⊥) b4,M + (S · ẑ) b5,M

Sx a
V
3 +

Sz

M
px h

⊥
1L +

p⊥·S⊥

M2
px h

⊥
1T =

= Sx b1,M + kx
k⊥

(S · k̂⊥) b2,M + kx
k⊥

(S · ẑ) b3,M +
ky

k⊥

[(
k̂⊥ × ẑ

)
· S

]
b6,M

Sy a
V
3 +

Sz

M
py h

⊥
1L +

p⊥·S⊥

M2
py h

⊥
1T =

= Sy b1,M +
ky

k⊥

(S · k̂⊥) b2,M +
ky

k⊥

(S · ẑ) b3,M − kx
k⊥

[(
k̂⊥ × ẑ

)
· S

]
b6,M

where

aV3 =
1

2

∫
dp+dp−

(2π)4
δ[p+ − xP+] P+ AV

3
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Transverse Momentum Distributions II

The transverse momentum distributions are obtained as integrals of Aj , Ãj (j = 1, 2, 3)

on p+ and p− [Barone, Drago, Ratcliffe, Phys. Rep. 359, 1 (2002)]

f(x,p2
⊥) =

∫
dp+dp−P+

2 (2π)4
δ[p+ − xP+] A1 ,

∆f(x, |p⊥|2) = 1

2

∫
dp+dp−

(2π)4
δ[p+ − xP+] P+A2 ,

g1T (x, |p⊥|2) = 1

2

∫
dp+dp−

(2π)4
δ[p+ − xP+] P+Ã1 ,

∆′
T f(x, |p⊥|2) = 1

2

∫
dp+dp−

(2π)4
δ[p+ − xP+] P+

(
A3 +

|p⊥|2
2M2

Ã3

)
,

h⊥1L(x, |p⊥|2) = 1

2

∫
dp+dp−

(2π)4
δ[p+ − xP+] P+Ã2 ,

h⊥1T (x, |p⊥|2) = 1

2

∫
dp+dp−

(2π)4
δ[p+ − xP+] P+Ã3 .

The obtained relations between the TMDs and the quantities bi,M allow one to

express the TMDs in terms of the bi,M
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Transverse Momentum Distributions III

Then in valence approximation one has
f(x, |p⊥|2) = b0

∆f(x, |p⊥|2) =
{
b1,M + b5,M

}

For 3He the transverse momentum g1T (x, |p⊥|2) = M

|p⊥| b4,M

distributions can be accurately ∆′
T f(x, |p⊥|2) = 1

2

{
2 b1,M + b2,M + b6,M

}

evaluated h⊥1L(x, |p⊥|2) = M

|p⊥| b3,M

h⊥1T (x, |p⊥|2) = M2

|p⊥|2
{
b2,M − b6,M

}

In the case of 3He the TMDs could be obtained through measurements of appropriate

spin asymmetries in 3He(e, e′p) experiments at high momentum transfer.

Let us remind that nτ
σσ′ (x,k⊥;M,S) =

=
2(−1)M+1/2

(1− x)

∫
dk23

{
Zτ

σσ′ (x,k⊥, k23, L = 0,S) + Zτ
σσ′ (x,k⊥, k23, L = 2,S)

}

L is the orbital angular momentum of the one-body off-diagonal density matrix. Then the

TMDs receive contributions from L=0 and L=2.
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Transverse Momentum Distributions IV

Linear equalities between the transverse parton distributions were proposed

[ Jacob, Mulders, Rodrigues, Nucl. Phys. A 626, 937 (1997); Pasquini, Cazzaniga, Boffi,

Phys. Rev. D 78, 034025 (2008); Lorce’, Pasquini, Phys. Rev. D 84, 034039 (2011)]

∆f(x, |p⊥|2) = ∆′
T f(x, |p⊥|2) +

|p⊥|2
2M2

h⊥1T (x, |p⊥|2)

g1T (x, |p⊥|2) = −h⊥1L(x, |p⊥|2)

One finds that these equalities hold exactly in valence approximation when the

contribution to the transverse momentum distributions from the angular momentum

L = 2 is absent.

As far as the quadratic relation discussed in the above papers is concerned

(g1T )2 + 2 ∆′
T f h⊥1T = 0

in our approach it does not hold, even if the contribution from the angular momentum

L = 2 is absent, because of the presence of
∫
dk23 in the expressions of the transverse

momentum distributions.
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Conclusions an Perspectives I

A Poincaré covariant description of nuclei, based on the
light-front Hamiltonian dynamics, has been proposed. The

Bakamjian-Thomas construction of the Poincaré generators allows one to embed

the successful phenomenology for few-nucleon systems in a Poincaré covariant

framework.

The definition of the nucleon momentum κ in the intrinsic reference frame of the

cluster (1,23) and the use of the tensor product of a plane wave of momentum κ

times the state of a fully interacting spectator subsystem allows one to take care of

macrocausality and to introduce a new effect of binding in the spectral function.

Normalization and momentum sum rule are satisfied at the same time

The LF spectral function can be used to evaluate DIS or SIDIS processes.

A calculation of DIS processes based on our spectral function will indicate which is

the gap with respect to the experimental data to be filled by effects of

non-nucleonic degrees of freedom or by modifications of nucleon structure in

nuclei.
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Conclusions an Perspectives II

A first test of our approach is the EMC effect for 3
He.

The spectral function has been obtained from the non-relativistic wave function

with the AV18 NN interaction. The full expression for the 2-body contribution has

been used. Encouraging improvements clearly appear with respect to a

convolution approach.

Next step : full calculation of the 3-body contribution

The LF spin-dependent spectral function for a spin 1/2 system composed by three

fermions (as the 3He or a nucleon in valence approximation) can be expressed

through 7 functions Bi,M

[
|k⊥|, x, ǫ, (S · k̂⊥)2, (S · ẑ)2

]
.

An analogous expression occurs for the spin-dependent momentum distribution in

terms of seven functions bi,M

[
|k⊥|, x, (S · k̂⊥)2, (S · ẑ)2

]
.

We intend to evaluate the transverse momentum distributions for 3He, that

could be extracted from measurements of appropriate spin asymmetries in
3He(e, e′p) experiments at high momentum transfer.

The linear relations proposed between the TMDs hold in valence approximation

whenever the contribution from the L=2 orbital angular momentum of the one-body

off-diagonal density matrix is absent.
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Preliminary results for 3
He EMC effect

Pace, Del Dotto, Kaptari, Rinaldi,

Salmè, Scopetta,

Few-Body Sist. 57(2016)601

RA
2 (x) =

A FA
2 (x)

Z F p
2 (x) + (A− Z) Fn

2 (x)

Solid line: LF Spectral Function, with the exact calculation for the 2-body channel,

and an average energy in the 3-body contribution: < k̄23 >= 113.53MeV

(proton), < k̄23 >= 91.27MeV (neutron).

Dotted line: convolution model for the LF momentum distribution as in Oelfke,

Sauer, Coester, Nucl. Phys. A 518, 593 (1990)

Improvements clearly appear with respect to the convolution result. The next step will be

the full calculation of the EMC effect for 3He, including the exact 3-body contribution. !
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