A Poincaré Covariant Light-Front Spectral Function for the Study of Nuclear Structure

Emanuele Pace - Università di Roma "Tor Vergata" and INFN, Roma Tor Vergata, Italy

Alessio Del Dotto - INFN, Roma, Italy and TJLAB, USA
Matteo Rinaldi - Departamento de Fisica Teòrica-IFIC, Universidad de
Valencia-CSIC, Spain
Giovanni Salmè - INFN, Roma, Italy
Sergio Scopetta- Università di Perugia and INFN, Sezione di Perugia, Italy

Outline

- A relativistic treatment to accurately describe the nuclear structure is needed JLab program @ 12 GeV :
DIS - Structure functions in ${ }^{3} \mathrm{H}$ and ${ }^{3} \mathrm{He}$ nuclei MARATHON Coll. E12-10-103 SIDIS - Asymmetries : H. Gao et al, PR12-09-014; J.P. Chen et al, PR12-11-007
- A Poincarè covariant spectral function for ${ }^{3} \mathrm{He}$ within the light-front (LF) dynamics Del Dotto, Pace, Salmè, Scopetta, Physical Review C 95, 014001 (2017)
E. P., A. Del Dotto, L. Kaptari, M. Rinaldi, G. Salmè, S. Scopetta

Few Body Syst. 54 (2013) 1079; Few Body Syst. 56 (2015) 425; Few-Body Syst. 57 (2016) 601

- EMC effect in ${ }^{3} \mathrm{He}$ with the LF spectral function: preliminary results
- Relation between the LF spectral function and the correlator in valence approximation
- The six T-even transverse momentum distributions (TMDs) : there are approximate relations between the TMDs?
- Conclusions and Perpectives

Why a relativistic treatment?

JLAB experiments @12 GeV

- The Standard Model of Few-Nucleon Systems, where nucleon and pion degrees of freedom are taken into account, has achieved a very high degree of sophistication.
- Nonetheless, one should try to fulfill, as much as possible, the relativistic constraints, dictated by the covariance with respect the Poincaré Group, \mathcal{G}_{P}, when processes involving nucleons with high 3-momentum are considered and a high precision is needed.
This is the case if one studies, e.g., i) the nucleon structure functions (unpolarized and polarized); ii) the nucleon TMDs, iii) signatures of short-range correlations; iv) SIDIS processes.
- At least, one should carefully deal with the boosts of the nuclear states, $\left|\Psi_{\text {init }}\right\rangle$ and $\left|\Psi_{f i n}\right\rangle$!

Poincaré covariance and locality

General principles to be implemented

* Extended Poincaré covariance - Commutation rules between the generators

$$
\begin{gathered}
{\left[P^{\mu}, P^{\nu}\right]=0, \quad\left[M^{\mu \nu}, P^{\rho}\right]=-\imath\left(g^{\mu \rho} P^{\nu}-g^{\nu \rho} P^{\mu}\right),} \\
{\left[M^{\mu \nu}, M^{\rho \sigma}\right]=-\imath\left(g^{\mu \rho} M^{\nu \sigma}+g^{\nu \sigma} M^{\mu \rho}-g^{\mu \sigma} M^{\nu \rho}-g^{\nu \rho} M^{\mu \sigma}\right)}
\end{gathered}
$$

\mathcal{P} and \mathcal{T} have to be taken into account!
$\star \star$ Macroscopic locality (\equiv cluster separability): i.e. observables associated with different space-time regions must commute in the limit of large spacelike separation, rather than for arbitrary (μ-locality) spacelike separations (Keister-Polyzou, Adv. Nucl. Phys. 20, 225 (1991)). When a system is separated into disjoint subsystems by a sufficiently large spacelike separation, then the subsystems behave as independent systems.

Adopted Tool: The Dirac Relativistic Hamiltonian Dynamics in the light-front form
P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949)

Poincarè covariance

Relativistic Hamiltonian Dynamics

The Relativistic Hamiltonian Dynamics (RHD) of an interacting system, introduced by Dirac, plus the Bakamijan-Thomas (BT) construction of the Poincaré generators (Phys. Rev. 92, 1300 (1953)) allow one to generate a description of DIS, SIDIS, DVCS which :

- is fully Poincaré covariant
has a fixed number of on-mass-shell constituents
The Light-Front form of RHD is adopted. It has :
i) 7 kinematical generators; the kinematic subgroup is the set of transformations that leave the light front $x^{+}=0$ invariant,
ii) a subgroup structure of the LF boosts,
iii) and a meaningful Fock expansion.
- It allows one to take advantage of the whole successfull non-relativistic phenomenology for the nuclear interaction
- DIS and SIDIS are sitting on the light cone

A Light-Front spin-dependent Spectral Function can be defined to describe DIS and SIDIS processes. It implements macroscopic locality (\equiv cluster separability).

Light-Front Hamiltonian Dynamics (LFHD)

Among the possible forms of RHD, the Light-Front one has several advantages:

- 7 Kinematical generators: i) three LF boosts (at variance with the dynamical nature of the Instant-form boosts), ii) $\tilde{P}=\left(P^{+}, \mathbf{P}_{\perp}\right)$, iii) Rotation around the z -axis.
- The LF boosts have a subgroup structure : then one gets a trivial separation of the intrinsic motion (as in the non-relativistic case). Separation of intrinsic and global motion is important to correctly treat the boost between initial and final states !)
- $P^{+} \geq 0$ leads to a meaningful Fock expansion.
- No square root in the dynamical operator P^{-}, propagating the state in the LF-time.
- The infinite-momentum frame (IMF) description of DIS is easily included.

Drawback: the transverse LF-rotations are dynamical

- However, using the BT construction, one can define a kinematical, intrinsic angular momentum (very important for us!) .
- Bakamjian-Thomas construction and the

Light-Front Hamiltonian Dynamics

- An explicit construction of the 10 Poincaré generators, in presence of interactions, was given by Bakamjian and Thomas (PR 92 (1953) 1300).
The key ingredient is the mass operator :
i) only the mass operator M contains the interaction;
ii) it generates the dependence upon the interaction of the three dynamical generators in LFHD, namely P^{-}and the LF transverse rotations \vec{F}_{\perp};

The mass operator is the free mass, M_{0}, plus an interaction V, or $M_{0}^{2}+U$. The interaction, U or V, must commute with all the kinematical generators, and with the non-interacting angular momentum, as in the non-relativistic case.

- For the two-body case, it allows one to easily embed the NR phenomenology: i) the mass equation for the bound state, e.g. the deuteron, $\left[M_{0}^{2}(12)+U\right]\left|\psi_{D}\right\rangle=\left[4 m^{2}+4 k^{2}+U\right]\left|\psi_{D}\right\rangle=M_{D}^{2}\left|\psi_{D}\right\rangle=\left[2 m-B_{D}\right]^{2}\left|\psi_{D}\right\rangle$ becomes the Schr. eq. $\quad\left[4 m^{2}+4 k^{2}+4 m V^{N R}\right]\left|\psi_{D}\right\rangle=\left[4 m^{2}-4 m B_{D}\right]\left|\psi_{D}\right\rangle$ with the identification of U and $4 m V^{N R}$ and disregarding $\left(B_{D} / 2 m\right)^{2}$.
ii) The eigensolutions of the mass equation for the continuum are identical to the solutions of the Lippmann-Schwinger equation.

The BT Mass operator for A=3 nuclei

- For the three-body case the mass operator is

$$
M_{B T}(123)=M_{0}(123)+V_{12,3}^{B T}+V_{23,1}^{B T}+V_{31,2}^{B T}+V_{123}^{B T}
$$

where
$M_{0}(123)=\sqrt{m^{2}+k_{1}^{2}}+\sqrt{m^{2}+k_{2}^{2}}+\sqrt{m^{2}+k_{3}^{2}} \quad$ is the free mass operator,
$\mathbf{k}_{i}(i=1-3)$ are momenta in the intrinsic reference frame, i.e. the rest frame for a system of free particles: $\quad \mathbf{k}_{i}=L_{f}^{-1}\left(P / M_{0}\right) \mathbf{p}_{i} \quad \mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}=0$
$V_{123}^{B T}$ is a short-range three-body force
Final remark: the commutation rules impose to $V^{B T}$ analogous properties as the ones of $V^{N R}$, with respect to the total 4 -momentum and to the total angular momentum.

- The full theory must fulfill the macroscopic locality. This property can be implemented by using interaction-dependent, unitary operators: the packing operators (Sokolov, Theor. Mat. Fiz. 36 (1978) 355).

The BT Mass operator for A=3 nuclei - II

The NR mass operator is written as

$$
M^{N R}=3 m+\sum_{i=1,3} \frac{k_{i}^{2}}{2 m}+V_{12}^{N R}+V_{23}^{N R}+V_{31}^{N R}+V_{123}^{N R}
$$

and must obey to the commutation rules proper of the Galilean group, leading to translational invariance and independence of total 3-momentum.
Those properties are analogous to the ones in the BT construction. This allows us to consider the standard non-relativistic mass operator as a sensible BT mass operator, and embed it in a Poincaré covariant approach.

$$
M_{B T}(123)=M_{0}(123)+V_{12,3}^{B T}+V_{23,1}^{B T}+V_{31,2}^{B T}+V_{123}^{B T} \sim M^{N R}
$$

The 2-body phase-shifts contain the relativistic dynamics, and the Lippmann-Schwinger equation, like the Schrödinger one, has a suitable structure for the BT construction. Therefore what has been learned till now about the nuclear interaction, within a non-relativistic framework, can be re-used in a Poincaré covariant framework.
The eigenfuntions of $M^{N R}$ do not fulfill the cluster separability, but we take care of macrocausality in the spectral function.

To complete the matter: the spin

- Coupling spins and orbital angular momenta is easily accomplished in the Instant Form of RHD (kinematical hyperplane $\mathrm{t}=0$) through Clebsch-Gordan coefficients, since in this form the three rotation generators are independent of interaction.
- To embed this machinery in the LFHD one needs unitary operators, the so-called Melosh rotations that relate the LF spin wave function and the canonical one. For a particle of $\operatorname{spin}(1 / 2)$ with LF momentum $\tilde{\mathbf{k}} \equiv\left\{k^{+}, \vec{k}_{\perp}\right\}$
where

$$
|\mathbf{k} ; s, \sigma\rangle_{c}=\sum_{\sigma^{\prime}} D_{\sigma^{\prime}, \sigma}^{1 / 2}\left(R_{M}(\tilde{\mathbf{k}})\right)\left|\tilde{\mathbf{k}} ; s, \sigma^{\prime}\right\rangle_{L F}
$$

$D_{\sigma^{\prime}, \sigma}^{1 / 2}\left(R_{M}(\tilde{\mathbf{k}})\right)$ is the standard Wigner function for the $J=1 / 2$ case , $R_{M}(\tilde{\mathbf{k}})$ is the rotation between the rest frames of the particle reached through a LF boost or a canonical boost, starting from the same Pauli-Lubanski vector.
$D^{\frac{1}{2}}\left[\mathcal{R}_{M}(\tilde{\mathbf{k}})\right]_{\sigma \sigma^{\prime}}=\chi_{\sigma}^{\dagger} \frac{m+k^{+}-\imath \boldsymbol{\sigma} \cdot\left(\hat{z} \times \mathbf{k}_{\perp}\right)}{\sqrt{\left(m+k^{+}\right)^{2}+\left|\mathbf{k}_{\perp}\right|^{2}}} \chi_{\sigma^{\prime}}={ }_{L F}\left\langle\tilde{\mathbf{k}} ; s \sigma \mid \mathbf{k} ; s \sigma^{\prime}\right\rangle_{c}$,
χ_{σ} is a two-dimensional spinor. To use the Clebsch-Gordan coefficients to couple angular momenta in LFHD one has to exploit the relation with the canonical spin.

The spin-dependent Spectral Function

The Spectral Function: probability distribution to find a particle with given 3-momentum \vec{p}, and missing energy E inside a bound system.
For a system polarized along the polarization vector S in a NR framework

$$
P_{\sigma, \sigma^{\prime}, \mathcal{M}}^{\tau}(\vec{p}, E)=\sum_{f_{(A-1)}}\left\langle\vec{p}, \sigma \tau ; \psi_{f_{(A-1)}} \mid \psi_{J \mathcal{M}}^{A}\right\rangle\left\langle\psi_{J \mathcal{M}}^{A} \mid \psi_{f_{(A-1)}} ; \vec{p}, \sigma^{\prime} \tau\right\rangle \delta\left(E-E_{f_{(A-1)}}+E_{A}\right)
$$

- $\left|\psi_{J \mathcal{M}}^{A}\right\rangle$: ground state, eigensolution of

$$
M_{A}^{N R}\left|\psi_{\mathcal{J} \mathcal{M}}^{A}\right\rangle=E_{A}\left|\psi_{J \mathcal{M}}^{A}\right\rangle \quad \text { with } \quad\left|\psi_{\mathcal{J} \mathcal{M}}^{A}\right\rangle_{\boldsymbol{S}}=\sum_{m}\left|\psi_{\mathcal{J} m}\right\rangle_{z} D_{m, \mathcal{M}}^{\mathcal{J}}(\alpha, \beta, \gamma)
$$ α, β and γ Euler angles of the rotation from the z-axis to the polarization vector S

- $\left|\psi_{f_{(A-1)}}\right\rangle$: a state of the $(A-1)$-particle spectator system: fully interacting !

$$
M_{(A-1)}^{N R}\left|\psi_{f_{(A-1)}}\right\rangle=E_{f_{(A-1)}}\left|\psi_{f_{(A-1)}}\right\rangle
$$

- $|\vec{p}, \sigma \tau\rangle$ plane wave with momentum \vec{p} in the system rest frame and spin along z equal to σ
- NR overlaps $\left\langle\vec{p}, \sigma \tau ; \psi_{f_{(A-1)}} \mid \psi_{J \mathcal{M}}^{A}\right\rangle \quad$ with the same interaction in A and $A-1$

LF Spectral Function for three-body systems

A. Del Dotto, E. Pace, G. Salmè, S. Scopetta, Physical Review C 95, 014001 (2017)
$\mathcal{P}_{\sigma^{\prime} \sigma}^{\tau_{1}}(\tilde{\boldsymbol{\kappa}}, \epsilon, S)=\rho(\epsilon) \sum_{J J_{z} \alpha} \sum_{T \tau} L F\left\langle\tau T ; \alpha, \epsilon ; J J_{z} ; \tau_{1} \sigma^{\prime}, \tilde{\boldsymbol{\kappa}} \mid \Psi_{0} ; S T_{z}\right\rangle\left\langle S T_{z} ; \Psi_{0} \mid \tilde{\boldsymbol{\kappa}}, \sigma \tau_{1} ; J J_{z} ; \epsilon, \alpha ; T \tau\right\rangle_{L F}$
$\rho(\epsilon) \equiv$ density of the t-b states: 1 for the bound state, and $m \sqrt{m \epsilon} / 2$ for the excited ones

- $\left|\Psi_{0} ; S_{z} T_{z}\right\rangle=\left|j, j_{z} ; \epsilon^{3} ; \frac{1}{2} T_{z}\right\rangle$ three-body bound eigenstate of $M_{B T}(123) \sim M^{N R}$ ${ }_{L F}\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3} ; \tau_{1}, \tau_{2}, \tau_{3} ; \tilde{\mathbf{k}}_{1}, \tilde{\mathbf{k}}_{23} \mid \Psi_{0} ; S_{z} T_{z}\right\rangle=\sum_{\sigma_{1}^{\prime} \sigma_{2}^{\prime} \sigma_{3}^{\prime}} D^{\frac{1}{2}}\left[\mathcal{R}_{M}\left(\tilde{\mathbf{k}}_{1}\right)\right]_{\sigma_{1} \sigma_{1}^{\prime}} D^{\frac{1}{2}}\left[\mathcal{R}_{M}\left(\tilde{\mathbf{k}}_{2}\right)\right]_{\sigma_{2} \sigma_{2}^{\prime}}$
$\times D^{\frac{1}{2}}\left[\mathcal{R}_{M}\left(\tilde{\mathbf{k}}_{3}\right)\right]_{\sigma_{3} \sigma_{3}^{\prime}} \sqrt{\frac{(2 \pi)^{6} 2 E_{1} E_{23} M_{23}}{2 M_{0}(1,2,3)}}\left\langle\sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \sigma_{3}^{\prime} ; \tau_{1}, \tau_{2}, \tau_{3} ; \mathbf{k}_{1}, \mathbf{k}_{23} \mid j, j_{z} ; \epsilon^{3} ; \frac{1}{2} T_{z}\right\rangle$
$\tilde{\mathbf{k}}_{i}$ momenta in the intrinsic reference frame of three free particles with free mass

$$
M_{0}(1,2,3)=E_{1}+\sqrt{M_{23}^{2}+\left|\mathbf{k}_{1}\right|^{2}} \quad E_{1}=\sqrt{m^{2}+\left|\mathbf{k}_{1}\right|^{2}} \quad M_{23}=2 \sqrt{\left(m^{2}+\left|\mathbf{k}_{23}\right|^{2}\right)}
$$

$\tilde{\mathbf{k}}_{23}$ momentum for the internal motion of the pair (23) $\quad E_{23}=\sqrt{M_{23}{ }^{2}+k_{1}^{2}}$

- $D^{\frac{1}{2}}\left[\mathcal{R}_{M}(\tilde{\mathbf{k}})\right]_{\sigma \sigma^{\prime}} \quad$ Melosh operator

LF Spectral F. for three-body systems II

A. Del Dotto, E. Pace, G. Salmè, S. Scopetta, Physical Review C 95, 014001 (2017)

- $\left|\tilde{\kappa}, \sigma \tau_{1} ; J J_{z} ; \epsilon, \alpha ; T \tau\right\rangle_{L F} \quad$ tensor product of a plane wave for particle 1 with LF momentum $\tilde{\boldsymbol{\kappa}}$ in the intrinsic reference frame of the $[1+(23)]$ cluster times the fully interacting state of the (23) pair of energy eigenvalue ϵ. As shown by Keister and Polyzou such a state fulfills the macrocausality. It is eigenstate of the mass operator $\quad M^{\prime}(1,23)=E(\kappa)+\sqrt{M_{23}^{2}\left(\left|\mathbf{k}_{23}\right|\right)+U_{23}+|\boldsymbol{\kappa}|^{2}} \quad$ with eigenvalue

$$
\mathcal{M}_{0}(1,23)=\sqrt{m^{2}+|\boldsymbol{\kappa}|^{2}}+E_{S} \quad E_{S}=\sqrt{M_{S}^{2}+|\boldsymbol{\kappa}|^{2}} \quad M_{S}=2 \sqrt{m^{2}+m \epsilon}
$$

$\int \mathbf{k}_{\perp}=\kappa_{\perp}, \quad k^{+}=\xi M_{0}(123)=\kappa^{+} M_{0}(123) / \mathcal{M}_{0}(1,23)$
The state $\left|\tilde{k}, \sigma \tau_{1} ; J J_{z} ; \epsilon, \alpha ; T \tau\right\rangle_{L F}$ does not fulfill the macrocausality

$$
\begin{aligned}
& { }_{L F}\left\langle T \tau ; \alpha, \epsilon ; J J_{z} ; \tau_{1} \sigma, \tilde{\boldsymbol{\kappa}} \mid j, j_{z} ; \epsilon^{3} ; \frac{1}{2} T_{z}\right\rangle=\sum_{\tau_{2} \tau_{3}} \int d \mathbf{k}_{23} \sum_{\sigma_{1}^{\prime}} D^{\frac{1}{2}}\left[\mathcal{R}_{M}(\tilde{\mathbf{k}})\right]_{\sigma \sigma_{1}^{\prime}} \times \\
& \sqrt{(2 \pi)^{3} 2 E(\mathbf{k})} \sqrt{\frac{\kappa^{+} E_{23}}{k^{+} E_{S}}} \sum_{\sigma_{2}^{\prime \prime}, \sigma_{3}^{\prime \prime}} \sum_{\sigma_{2}^{\prime}, \sigma_{3}^{\prime}} \mathcal{D}_{\sigma_{2}^{\prime \prime}, \sigma_{2}^{\prime}}\left(\tilde{\mathbf{k}}_{23}, \tilde{\mathbf{k}}_{2}\right) \mathcal{D}_{\sigma_{3}^{\prime \prime}, \sigma_{3}^{\prime}}\left(-\tilde{\mathbf{k}}_{23}, \tilde{\mathbf{k}}_{3}\right) \times \\
& { }_{N R}\left\langle T, \tau ; \alpha, \epsilon ; J J_{z} \mid \mathbf{k}_{23}, \sigma_{2}^{\prime \prime}, \sigma_{3}^{\prime \prime} ; \tau_{2}, \tau_{3}\right\rangle\left\langle\sigma_{3}^{\prime}, \sigma_{2}^{\prime}, \sigma_{1}^{\prime} ; \tau_{3}, \tau_{2}, \tau_{1} ; \mathbf{k}_{23}, \mathbf{k} \mid j, j_{z} ; \epsilon^{3} ; \frac{1}{2} T_{z}\right\rangle_{N R}
\end{aligned}
$$

ECT ${ }^{*}$ - April $19^{\text {th }}, 2018$

- Momentum distribution, normalization, and

momentum sum rule Del Dotto et al., PR C 95 (2017)

The LF spin-independent nucleon momentum distribution, averaged on the spin, is

$$
n^{\tau}\left(\xi, \mathbf{k}_{\perp}\right)=\sum_{\sigma} \sum_{\tau_{2}^{\prime} \tau_{3}^{\prime}} \sum_{\sigma_{2}^{\prime}, \sigma_{3}^{\prime}} \int d \mathbf{k}_{23} \frac{E(\mathbf{k}) E_{23}}{(1-\xi) k^{+}}\left|\left\langle\sigma_{3}^{\prime}, \sigma_{2}^{\prime}, \sigma ; \tau_{3}^{\prime}, \tau_{2}^{\prime}, \tau ; \mathbf{k}_{23}, \mathbf{k} \mid j, j_{z} ; \epsilon^{3} ; \frac{1}{2} T_{z}\right\rangle\right|^{2}
$$

where $k^{+}=\xi M_{0}(1,2,3)$. From the normalization of the Spectral Function one has

$$
\int_{0}^{1} d \xi f_{\tau}^{A}(\xi)=1 \quad f_{\tau}^{A}(\xi)=\int d \mathbf{k}_{\perp} n^{\tau}\left(\xi, \mathbf{k}_{\perp}\right)
$$

Then one obtains

$$
\begin{gathered}
N_{A}=\frac{1}{A} \int d \xi\left[Z f_{p}^{A}(\xi)+(A-Z) f_{n}^{A}(\xi)\right]=1 \\
M S R=\frac{1}{A} \int d \xi \xi\left[Z f_{p}^{A}(\xi)+(A-Z) f_{n}^{A}(\xi)\right]=\frac{1}{A}
\end{gathered}
$$

By using the ${ }^{3} \mathrm{He}$ wave function, corresponding to the NN interaction AV18, that was evaluated by Kievsky, Rosati and Viviani (Nucl. Phys. A551, 241 (1993)) we obtain

$$
M S R_{\text {calc }}=0.333
$$

Namely, within LFHD normalization and momentum sum rule do not conflict

Hadronic Tensor and Nuclear Structure

Function F_{2}

The hadronic tensor for an unpolarized nucleus reads

$$
W_{A}^{\mu \nu}\left(P_{A}, T_{A z}\right)=\sum_{N} \sum_{\sigma} \sum d \epsilon \int \frac{d \boldsymbol{\kappa}_{\perp} d \kappa^{+}}{(2 \pi)^{3} 2 \kappa^{+}} \frac{1}{\xi} \mathcal{P}^{N}(\tilde{\boldsymbol{\kappa}}, \epsilon) w_{N, \sigma}^{\mu \nu}(p, q)
$$

with $w_{N, \sigma}^{\mu \nu}(p, q)$ the hadronic tensor for a single constituent. In the Bjorken limit the nuclear structure function F_{2}^{A} can be obtained from the hadronic tensor as follows

$$
\begin{aligned}
F_{2}^{A}(x) & =\sum_{N} \sum_{\sigma} \int d \epsilon \int \frac{d \boldsymbol{\kappa}_{\perp} d \kappa^{+}}{(2 \pi)^{3} 2 \kappa^{+}} \frac{1}{\xi} \mathcal{P}^{N}(\tilde{\boldsymbol{\kappa}}, \epsilon)(-x) g_{\mu \nu} w_{N, \sigma}^{\mu \nu}(p, q)= \\
& =\sum_{N} \sum_{\sigma \tau} \sum d \epsilon \int \frac{d \boldsymbol{\kappa}_{\perp} d \kappa^{+}}{(2 \pi)^{3} 2 \kappa^{+}} \mathcal{P}^{\tau}(\tilde{\boldsymbol{\kappa}}, \epsilon) \frac{P_{A}^{+}}{p^{+}} \frac{Q^{2}}{2 P_{A} \cdot q} \frac{2 p \cdot q}{Q^{2}} F_{2}^{N}(z)
\end{aligned}
$$

where $\quad x=\frac{Q^{2}}{2 P_{A} \cdot q} \quad$ is the Bjorken variable, $\quad z=\frac{Q^{2}}{2 p \cdot q} \quad, \quad \xi=\frac{\kappa^{+}}{\mathcal{M}_{0}(1,23)} \quad$ and $F_{2}^{N}(z)=-z g_{\mu \nu} w_{N, \sigma}^{\mu \nu}(p, q) \quad$ the nucleon structure function.
One cannot integrate on ϵ to obtain the momentum distribution because ξ depends on ϵ.
We used the Pisa group wave function to evaluate $R_{2}^{A}(x)=\frac{A F_{2}^{A}(x)}{Z F_{2}^{p}(x)+(A-Z) F_{2}^{n}(x)}$

Preliminary Results for ${ }^{3} \mathrm{He}$ EMC effect

The contribution from the 2B channel with the spectator pair in a deuteron state

- Solid line: calculation with the LF Spectral Function.

D Dashed line: as the solid one, but with $\sqrt{\bar{k}_{23}^{2}}=136.37 \mathrm{MeV}$ for the deut. (AV18)

- Dotted line: convolution formula with a momentum distribution as in Oelfke, Sauer, Coester, Nucl. Phys. A 518, 593 (1990) - only two-body contribution

Improvements clearly appear with respect to the convolution result. The next step will be the full calculation of the EMC effect for 3 He , including the exact 3-body contribution. !

LF spin-dependent Spectral Function in

terms of scalars

The LF spin-dependent spectral function for a system polarized along S, can be obtained in terms of the available vectors, i.e. the unit vector \hat{z} of the z axis, the polarization vector S , and the transverse (with respect to the z axis) momentum component $\mathrm{k}_{\perp}=\mathrm{p}_{\perp}=\kappa_{\perp}$ of the momentum p of one of the constituents,

$$
\mathcal{P}_{\mathcal{M}, \sigma^{\prime} \sigma}^{\tau}(\tilde{\boldsymbol{\kappa}}, \epsilon, S)=\frac{1}{2}\left[\mathcal{B}_{0, \mathcal{M}}^{\tau}+\boldsymbol{\sigma} \cdot \mathcal{F}_{\mathcal{M}}^{\tau}(\tilde{\boldsymbol{\kappa}}, \epsilon, \mathbf{S})\right]_{\sigma^{\prime} \sigma}
$$

The scalar $\mathcal{B}_{0, \mathcal{M}}^{\tau}=\operatorname{Tr}\left[\mathcal{P}_{\mathcal{M}, \sigma^{\prime} \sigma}^{\tau}(\tilde{\boldsymbol{\kappa}}, \epsilon, S)\right]$ yields the unpolarized spectral function; the pseudovector $\mathcal{F}_{\mathcal{M}}^{\tau}(\tilde{\boldsymbol{\kappa}}, \epsilon, \mathbf{S})=\operatorname{Tr}\left[\hat{\mathcal{P}}_{\mathcal{M}}^{\tau}(\tilde{\boldsymbol{\kappa}}, \epsilon, S) \sigma\right]$ can be written as a linear combination of the available pseudovectors,

$$
\begin{aligned}
& \mathcal{F}_{\mathcal{M}}\left(\xi, \mathbf{k}_{\perp} ; \epsilon, \mathbf{S}\right)=\mathbf{S} \mathcal{B}_{1, \mathcal{M}}+\hat{\mathbf{k}}_{\perp}\left(\mathbf{S} \cdot \hat{\mathbf{k}}_{\perp}\right) \mathcal{B}_{2, \mathcal{M}}+\hat{\mathbf{k}}_{\perp}(\mathbf{S} \cdot \hat{z}) \mathcal{B}_{3, \mathcal{M}} \\
&+\hat{z}\left(\mathbf{S} \cdot \hat{\mathbf{k}}_{\perp}\right) \mathcal{B}_{4, \mathcal{M}}+\hat{z}(\mathbf{S} \cdot \hat{z}) \mathcal{B}_{5, \mathcal{M}}+\left(\hat{\mathbf{k}}_{\perp} \times \hat{z}\right)\left[\left(\hat{\mathbf{k}}_{\perp} \times \hat{z}\right) \cdot \mathbf{S}\right] \mathcal{B}_{6, \mathcal{M}}
\end{aligned}
$$

where any angular dependence is explicitely given.
The seven scalar quantities $\mathcal{B}_{i, \mathcal{M}}=\mathcal{B}_{i, \mathcal{M}}\left[\left|\mathbf{k}_{\perp}\right|, \xi, \epsilon,\left(\mathbf{S} \cdot \hat{\mathbf{k}}_{\perp}\right)^{2},(\mathbf{S} \cdot \hat{z})^{2}\right](i=0,1, \ldots, 6)$ can depend on the possible scalars, i.e., $\left|\mathbf{k}_{\perp}\right|, \xi, \epsilon,\left(\mathbf{S} \cdot \hat{\mathbf{k}}_{\perp}\right)^{2},(\mathbf{S} \cdot \hat{z})^{2}$.

LF spin-dependent momentum distribution I

A. Del Dotto, E. Pace, G. Salmè, S. Scopetta, Physical Review C 95, 014001 (2017)

If the LF spectral function times the constant $c=\left(\pi E_{S}\right) /\left(2 m \kappa^{+}\right)$is integrated on p^{-}, i.e., on the intrinsic energy ϵ of the $(A-1)$ system, then the LF spin-dependent momentum distribution $\mathcal{N}_{\mathcal{M}}^{\tau}\left(x, \mathbf{k}_{\perp} ; \mathbf{S}\right)($ a 2×2 matrix) is obtained

$$
\begin{array}{r}
\mathcal{N}_{\mathcal{M}}^{\tau}\left(x, \mathbf{k}_{\perp} ; \mathbf{S}\right)=\frac{1}{2} \int \frac{d p^{+} d p^{-}}{(2 \pi)^{4}} \delta\left[p^{+}-x P^{+}\right] P^{+}{ }_{c} \mathcal{P}_{\mathcal{M}}^{\tau}(\tilde{\boldsymbol{\kappa}}, \epsilon, S) \\
=\frac{1}{2} \sum d \epsilon \frac{1}{(2 \pi)^{4}} \frac{4 m}{P^{+}-p^{+}} P^{+} \frac{\pi}{2 m} \frac{E_{S}}{\kappa^{+}} \mathcal{P}_{\mathcal{M}}^{\tau}(\tilde{\boldsymbol{\kappa}}, \epsilon, S) \\
=\sum d \epsilon \frac{1}{2(2 \pi)^{3}} \frac{1}{1-x} \frac{E_{S}}{\kappa^{+}} \mathcal{P}_{\mathcal{M}}^{\tau}(\tilde{\boldsymbol{\kappa}}, \epsilon, S) \quad p^{+}=x P^{+} \quad \kappa^{+}=x \mathcal{M}_{0}[1,(23)]
\end{array}
$$

The constant c is introduced to fulfill the normalization of the momentum distribution

$$
\int d \xi \int d \mathbf{k}_{\perp} \operatorname{Tr}\left[\boldsymbol{\mathcal { N }}_{\mathcal{M}}^{\tau}\left(x, \mathbf{k}_{\perp} ; \mathbf{S}\right)\right]=1
$$

As it occurs for the spectral function, the LF spin-dependent momentum distribution $\mathcal{N}_{\mathcal{M}}^{\tau}\left(x, \mathbf{k}_{\perp} ; \mathbf{S}\right)$ can be expressed through the three independent vectors available in the rest frame of the system, i.e. $\mathbf{k}_{\perp}, \mathbf{S}$, and the unit vector of the z axis, \hat{z}.

LF spin-dependent momentum distribution II

The LF spin-dependent momentum distribution $\mathcal{N}_{\mathcal{M}}^{\tau}\left(x, \mathbf{k}_{\perp} ; \mathbf{S}\right)$ can be expressed through the three independent vectors available in the rest frame of the system, $\mathrm{k}_{\perp}, \mathrm{S}$, and \hat{z}

$$
n_{\sigma^{\prime} \sigma}^{\tau}\left(x, \mathbf{k}_{\perp} ; \mathcal{M}, \mathbf{S}\right)=\left[\mathcal{N}_{\mathcal{M}}^{\tau}\left(x, \mathbf{k}_{\perp} ; \mathbf{S}\right)\right]_{\sigma^{\prime} \sigma}=\frac{1}{2}\left\{b_{0, \mathcal{M}}+\boldsymbol{\sigma} \cdot \boldsymbol{f}_{\mathcal{M}}\left(x, \mathbf{k}_{\perp} ; \mathbf{S}\right)\right\}_{\sigma^{\prime} \sigma}
$$

$\boldsymbol{f}_{\mathcal{M}}\left(x, \mathbf{k}_{\perp} ; \mathbf{S}\right)$ is a pseudovector depending upon the vector \mathbf{k}_{\perp} and the peudovector \mathbf{S}

$$
\begin{array}{r}
\quad f_{\mathcal{M}}\left(x, \mathbf{k}_{\perp} ; \mathbf{S}\right)=\mathbf{S} b_{1, \mathcal{M}}+\hat{\mathbf{k}}_{\perp}\left(\mathbf{S} \cdot \hat{\mathbf{k}}_{\perp}\right) b_{2, \mathcal{M}}+\hat{\mathbf{k}}_{\perp}(\mathbf{S} \cdot \hat{z}) b_{3, \mathcal{M}} \\
+\hat{z}\left(\mathbf{S} \cdot \hat{\mathbf{k}}_{\perp}\right) b_{4, \mathcal{M}}+\hat{z}(\mathbf{S} \cdot \hat{z}) b_{5, \mathcal{M}}+\left(\hat{\mathbf{k}}_{\perp} \times \hat{z}\right)\left[\left(\hat{\mathbf{k}}_{\perp} \times \hat{z}\right) \cdot \mathbf{S}\right] b_{6, \mathcal{M}}
\end{array}
$$

The seven functions $b_{i, \mathcal{M}}\left[\left|\mathbf{k}_{\perp}\right|, x,\left(\mathbf{S} \cdot \hat{\mathbf{k}}_{\perp}\right)^{2},(\mathbf{S} \cdot \hat{z})^{2}\right]$ are integrals over the energy ϵ of the functions $\mathcal{B}_{i, \mathcal{M}}\left[\left|\mathbf{k}_{\perp}\right|, x, \epsilon,\left(\mathbf{S} \cdot \hat{\mathbf{k}}_{\perp}\right)^{2},(\mathbf{S} \cdot \hat{z})^{2}\right]$
$b_{i, \mathcal{M}}\left[\left|\mathbf{k}_{\perp}\right|, x,\left(\mathbf{S} \cdot \hat{\mathbf{k}}_{\perp}\right)^{2},(\mathbf{S} \cdot \hat{z})^{2}\right]=\sum \frac{d \epsilon}{2(2 \pi)^{3}} \frac{1}{1-x} \frac{E_{S}}{\kappa^{+}} \mathcal{B}_{i, \mathcal{M}}\left[\left|\mathbf{k}_{\perp}\right|, x, \epsilon,\left(\mathbf{S} \cdot \hat{\mathbf{k}_{\perp}}\right)^{2},(\mathbf{S} \cdot \hat{z})^{2}\right]$
We now want to evaluate the functions $b_{i, \mathcal{M}}$.

LF spin-dependent momentum distribution III

For a three-body system the integration of the spectral function on the energy ϵ of the (23) pair gives
$n_{\sigma \sigma^{\prime}}^{\tau}\left(x, \mathbf{k}_{\perp} ; \mathcal{M}, \mathbf{S}\right)=\sum_{m} D_{m, \mathcal{M}}^{j}(\alpha, \beta, \gamma) \sum_{m^{\prime}}\left[D_{m^{\prime}, \mathcal{M}}^{j}(\alpha, \beta, \gamma)\right]^{*} \mathcal{F}_{\sigma \sigma^{\prime}}^{m m^{\prime}}\left(x, \mathbf{k}_{\perp}, \tau\right)$
with

$$
\mathcal{F}_{\sigma \sigma^{\prime}}^{m m^{\prime}}\left(x, \mathbf{k}_{\perp}, \tau\right)=\frac{1}{(1-x)} \sum_{\tau_{2} \tau_{3}} \sum_{\sigma_{2}, \sigma_{3}} \int d \mathbf{k}_{23} E\left(\mathbf{k}_{1}\right) \frac{E_{23}}{k_{1}^{+}}
$$

$\times \sum_{\sigma_{1}^{\prime}} D^{\frac{1}{2}}\left[\mathcal{R}_{M}\left(\tilde{\mathbf{k}}_{1}\right)\right]_{\sigma \sigma_{1}}\left\langle\sigma_{3}, \sigma_{2}, \sigma_{1} ; \tau_{3}, \tau_{2}, \tau ; \mathbf{k}_{23}, \mathbf{k}_{1} \mid j, j_{z}=m ; \epsilon_{i n t}^{3}, \Pi ; \frac{1}{2} T_{z}\right\rangle$
$\times \sum_{\tilde{\sigma}_{1}} D^{\frac{1}{2} *}\left[\mathcal{R}_{M}\left(\tilde{\mathbf{k}}_{1}\right)\right]_{\sigma^{\prime} \tilde{\sigma}_{1}}\left\langle\sigma_{3}, \sigma_{2}, \tilde{\sigma}_{1} ; \tau_{3}, \tau_{2}, \tau ; \mathbf{k}_{23}, \mathbf{k}_{1} \mid j, j_{z}=m^{\prime} ; \epsilon_{i n t}^{3}, \Pi ; \frac{1}{2} T_{z}\right\rangle^{*}$
with $\quad k_{1 \perp}=k_{\perp} \quad k_{1}^{+}=x M_{0}(1,2,3)$
The Euler angles α, β, γ describe the rotation from the z axis to the polarization vector \mathbf{S} and $\left\langle\sigma_{3}, \sigma_{2}, \sigma_{1} ; \tau_{3}, \tau_{2}, \tau ; \mathbf{k}_{23}, \mathbf{k}_{1} \mid j, j_{z}=m ; \epsilon_{i n t}^{3} ; \frac{1}{2} T_{z}\right\rangle$ is a three-body wave function in momentum space.
From these equations expressions for the quantities $b_{i, \mathcal{M}}\left[\left|\mathbf{k}_{\perp}\right|, x,\left(\mathbf{S} \cdot \hat{\mathbf{k}}_{\perp}\right)^{2},(\mathbf{S} \cdot \hat{z})^{2}\right]$ ($i=0,6$) can be obtained and accurately evaluated in the case of ${ }^{3} \mathrm{He}$.

LF spin-dependent momentum distribution IV

The ${ }^{3} \mathrm{He}$ wave function in momentum space can be written as follows

$$
\begin{array}{r}
\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3} ; \tau_{1}, \tau_{2}, \tau_{3} ; \mathbf{k}_{23},\left.\mathbf{k}_{1}\right|^{3} \mathrm{He} ; \frac{1}{2} m ; \frac{1}{2} T_{z}\right\rangle=\sum_{l_{23} \mu_{23}} \sum_{L_{\rho} M_{\rho}} Y_{l_{23} \mu_{23}}\left(\hat{\mathbf{k}}_{23}\right) Y_{L_{\rho} M_{\rho}}\left(\hat{\mathbf{k}}_{1}\right) \\
\times \sum_{T_{23}, \tau_{23}}\left\langle\left.\frac{1}{2} \tau_{2} \frac{1}{2} \tau_{3} \right\rvert\, T_{23} \tau_{23}\right\rangle\left\langle\left. T_{23} \tau_{23} \frac{1}{2} \tau_{1} \right\rvert\, \frac{1}{2} T_{z}\right\rangle \sum_{X M_{X}} \sum_{j_{23} m_{23}}\left\langle X M_{X} L_{\rho} M_{\rho} \left\lvert\, \frac{1}{2} m\right.\right\rangle\left\langle\left. j_{23} m_{23} \frac{1}{2} \sigma_{1} \right\rvert\, X M_{X}\right\rangle \\
\times \sum_{s_{23} \sigma_{23}}\left\langle\left.\frac{1}{2} \sigma_{2} \frac{1}{2} \sigma_{3} \right\rvert\, s_{23} \sigma_{23}\right\rangle\left\langle l_{23} \mu_{23} s_{23} \sigma_{23} \mid j_{23} m_{23}\right\rangle \mathcal{G}_{L_{\rho} X}^{j_{23} l_{23} s_{23}\left(k_{23}, k_{1}\right)}
\end{array}
$$

with
$\mathcal{G}_{L_{\rho} X}^{j_{23} l_{23} s_{23}}\left(k_{23}, k_{1}\right)=\frac{2(-1)^{\frac{l_{23}+L_{\rho}}{2}}}{\pi} \int r^{2} d r j_{l_{23}}\left(k_{23} r\right) \int \rho^{2} d \rho j_{L_{\rho}}\left(k_{1} \rho\right) \phi_{L_{\rho} X}^{j_{23} l_{23} s_{23}}(|\mathbf{r}|,|\boldsymbol{\rho}|)$.
Then one obtains

$$
n_{\sigma \sigma^{\prime}}^{\tau}\left(x, \mathbf{k}_{\perp} ; \mathcal{M}, \mathbf{S}\right)=
$$

$$
=\frac{2(-1)^{\mathcal{M}+1 / 2}}{(1-x)} \int d k_{23}\left\{\mathcal{Z}_{\sigma \sigma^{\prime}}^{\tau}\left(x, \mathbf{k}_{\perp}, k_{23}, L=0, \mathbf{S}\right)+\mathcal{Z}_{\sigma \sigma^{\prime}}^{\tau}\left(x, \mathbf{k}_{\perp}, k_{23}, L=2, \mathbf{S}\right)\right\}
$$

where L is the orbital angular momentum of the one-body off-diagonal density matrix.
The quantities $\mathcal{Z}_{\sigma \sigma^{\prime}}^{\tau}$ contain Clebsh-Gordan, 6 -j and 9-j coefficients and $\mathcal{G}_{L_{\rho} X}^{j_{23} l_{23} s_{23}}$.

Correlator

Let p be the momentum in the laboratory frame of an off-mass-shell fermion, with isospin τ, inside a bound system of A fermions with total momentum P and spin S. The fermion correlator in terms of the LF coordinates is [Barone, Drago, Ratcliffe, Phys. Rep. 359, 1 (2002)]
$\Phi_{\alpha, \beta}^{\tau}(p, P, S)=\frac{1}{2} \int d \xi^{-} d \xi^{+} d \boldsymbol{\xi}_{T} e^{\frac{i p^{-} \xi^{+}}{2}} e^{\frac{i p^{+}+\xi^{-}}{2}} e^{-i \mathbf{p}_{T} \cdot \boldsymbol{\xi}_{T}}\langle P, S, A| \bar{\psi}_{\beta}^{\tau}(0) \psi_{\alpha}^{\tau}(\xi)|A, S, P\rangle$
where $|A, S, P\rangle$ is the A-particle state and $\psi_{\alpha}^{\tau}(\xi)$ the particle field (e.g. a nucleon of isospin τ in a nucleus, or in valence approximation a quark in a nucleon).
The particle contribution to the correlation function from on-mass-shell fermions, i.e. the result obtained if the antifermion contributions are disregarded, is

$$
\begin{array}{r}
\Phi^{\tau p}(p, P, S)=\frac{\left(\not p_{o n}+m\right)}{2 m} \Phi^{\tau}(p, P, S) \frac{\left(\not p_{o n}+m\right)}{2 m}= \\
=\frac{1}{4 m^{2}} \sum_{\sigma} \sum_{\sigma^{\prime}} u\left(\tilde{\mathbf{p}}, \sigma^{\prime}\right) \bar{u}\left(\tilde{\mathbf{p}}, \sigma^{\prime}\right) \Phi^{\tau}(p, P, S) u(\tilde{\mathbf{p}}, \sigma) \bar{u}(\tilde{\mathbf{p}}, \sigma)
\end{array}
$$

Correlator and Light-Front spin-dependent

Spectral Function

Through lengthy but straightforward calculations it can be shown that a relation exists between the correlator in valence approximation and the spin-dependent LF spectral function

$$
\Phi_{\alpha, \beta}^{\tau p}(p, P, S)=\frac{2 \pi\left(P^{+}\right)^{2}}{\left(p^{+}\right)^{2} 4 m} \frac{E_{S}}{\mathcal{M}_{0}[1,(23)]} \sum_{\sigma \sigma^{\prime}}\left\{u_{\alpha}\left(\tilde{\mathbf{p}}, \sigma^{\prime}\right) \mathcal{P}_{\mathcal{M}, \sigma^{\prime} \sigma}^{\tau}(\tilde{\boldsymbol{\kappa}}, \epsilon, S) \bar{u}_{\beta}(\tilde{\mathbf{p}}, \sigma)\right\}
$$

It has to be stressed that when deriving this expression it naturally appears the momentum $\tilde{\kappa}$ in the intrinsic reference frame of the cluster [1,(23)], where particle 1 is free and the (23) pair is fully interacting.
The normalization condition for the particle correlator is

$$
\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{1}{2 P^{+}} \operatorname{Tr}\left(\gamma^{+} \Phi^{\tau p}(p, P, S)\right)=\frac{1}{2 P^{+}} \frac{1}{2} \frac{1}{(2 \pi)^{4}} \int d p^{-} d p^{+} d \mathbf{p}_{\perp} \operatorname{Tr}\left(\gamma^{+} \Phi^{\tau p}(p, P, S)\right)=1
$$

Correlator and Transverse Momentum

Distributions

Let us summarize the relations between the correlation function and the six T-even TMD's as presented in Barone, Drago, Ratcliffe, Phys. Rep. 359, 1 (2002).
The correlation function at the leading twist is given by

$$
\begin{array}{r}
\Phi(p, P, S)=\frac{1}{2} \not P A_{1}+\frac{1}{2} \gamma_{5} P\left[A_{2} S_{z}+\frac{1}{M} \widetilde{A}_{1} \mathbf{p}_{\perp} \cdot \mathbf{S}_{\perp}\right]+ \\
\quad+\frac{1}{2} P \gamma_{5}\left[A_{3} S_{\perp}+\widetilde{A}_{2} \frac{S_{z}}{M} \not p_{\perp}+\frac{1}{M^{2}} \widetilde{A}_{3} \mathbf{p}_{\perp} \cdot \mathbf{S}_{\perp} \not p_{\perp}\right]
\end{array}
$$

where M is the mass of the system. If only the contribution to the correlation function from on-mass-shell fermions is retained, i.e. the full correlation function $\Phi(p, P, S)$ is approximated by $\Phi^{p}(p, P, S)$, one can write

$$
\begin{array}{r}
\frac{1}{2 P^{+}} \operatorname{Tr}\left(\gamma^{+} \Phi\right) \sim \frac{1}{2 \mathrm{P}^{+}} \operatorname{Tr}\left(\gamma^{+} \Phi^{\mathrm{p}}\right)=\mathrm{A}_{1}^{\mathrm{V}} \\
\frac{1}{2 P^{+}} \operatorname{Tr}\left(\gamma^{+} \gamma_{5} \Phi\right) \sim \frac{1}{2 \mathrm{P}^{+}} \operatorname{Tr}\left(\gamma^{+} \gamma_{5} \Phi^{\mathrm{p}}\right)=\mathrm{S}_{\mathrm{z}} \mathrm{~A}_{2}^{\mathrm{V}}+\frac{1}{\mathrm{M}} \mathbf{p}_{\perp} \cdot \mathbf{S}_{\perp} \widetilde{\mathrm{A}}_{1}^{\mathrm{V}} \\
\frac{1}{2 P^{+}} \operatorname{Tr}\left(\mathrm{i} \sigma^{\mathrm{i}+} \gamma_{5} \Phi\right) \sim-\frac{1}{2 \mathrm{P}^{+}} \operatorname{Tr}\left(\gamma^{\mathrm{i}} \gamma^{+} \gamma_{5} \Phi^{\mathrm{p}}\right)=\mathrm{S}_{\perp}^{\mathrm{i}} \mathrm{~A}_{3}^{\mathrm{V}}+\frac{\mathrm{S}_{\mathrm{z}}}{\mathrm{M}} \mathrm{p}_{\perp}^{\mathrm{i}} \widetilde{\mathrm{~A}}_{2}^{\mathrm{V}}+\frac{\mathbf{p}_{\perp} \cdot \mathrm{S}_{\perp}}{\mathrm{M}^{2}} \mathrm{p}_{\perp}^{\mathrm{i}} \widetilde{\mathrm{~A}}_{3}^{\mathrm{V}}
\end{array}
$$ where $A_{j}^{V}, \widetilde{A}_{j}^{V}$ are the valence approximations for $A_{j}, \widetilde{A}_{j} \quad(j=1,2,3)$.

Correlator and LF Spectral Function I

The traces of Φ^{p} can be expressed by traces of the spectral function :

$$
\begin{aligned}
& \operatorname{Tr}\left(\gamma^{+} \Phi^{\mathrm{p}}\right)=\mathrm{D} \operatorname{Tr}\left[\hat{\mathcal{P}}_{\mathcal{M}}(\tilde{\boldsymbol{\kappa}}, \epsilon, \mathrm{S})\right] \quad \mathrm{D}=\frac{\left(\mathrm{P}^{+}\right)^{2}}{\mathrm{p}^{+}} \frac{\pi}{\mathrm{m}} \frac{\mathrm{E}_{\mathrm{S}}}{\mathcal{M}_{0}[1,(23)]} \\
& \operatorname{Tr}\left(\gamma^{+} \gamma_{5} \Phi^{\mathrm{p}}\right)=\mathrm{D} \operatorname{Tr}\left[\sigma_{\mathrm{z}} \hat{\mathcal{P}}_{\mathcal{M}}(\tilde{\boldsymbol{\kappa}}, \epsilon, \mathrm{S})\right] \\
& \operatorname{Tr}\left(\boldsymbol{p}_{\perp} \gamma^{+} \gamma_{5} \Phi^{\mathrm{p}}\right)=\mathrm{D} \operatorname{Tr}\left[\boldsymbol{p}_{\perp} \cdot \boldsymbol{\sigma} \hat{\mathcal{P}}_{\mathcal{M}}(\tilde{\boldsymbol{\kappa}}, \epsilon, \mathrm{S})\right]
\end{aligned}
$$

Then one obtains

$$
A_{1}^{V}=c \mathcal{B}_{0, \mathcal{M}} \quad c=\frac{\pi}{2 m} \frac{E_{S}}{\kappa^{+}}
$$

$$
\begin{array}{r}
S_{z} A_{2}^{V}+\frac{1}{M} \mathbf{p}_{\perp} \cdot \mathbf{S}_{\perp} \widetilde{A}_{1}^{V}=c\left[S_{z} \mathcal{B}_{1, \mathcal{M}}+\left(\mathbf{S} \cdot \hat{\mathbf{k}}_{\perp}\right) \mathcal{B}_{4, \mathcal{M}}+(\mathbf{S} \cdot \hat{z}) \mathcal{B}_{5, \mathcal{M}}\right] \\
S_{x} A_{3}^{V}+\frac{S_{z}}{M} p_{x} \widetilde{A}_{2}^{V}+\frac{\mathbf{p}_{\perp} \cdot \mathbf{S}_{\perp}}{M^{2}} p_{x} \widetilde{A}_{3}^{V}= \\
c\left[S_{x} \mathcal{B}_{1, \mathcal{M}}+\frac{k_{x}}{k_{\perp}}\left(\mathbf{S} \cdot \hat{\mathbf{k}}_{\perp}\right) \mathcal{B}_{2, \mathcal{M}}+\frac{k_{x}}{k_{\perp}}(\mathbf{S} \cdot \hat{z}) \mathcal{B}_{3, \mathcal{M}}+\frac{k_{y}}{k_{\perp}}\left[\left(\hat{\mathbf{k}}_{\perp} \times \hat{z}\right) \cdot \mathbf{S}\right] \mathcal{B}_{6, \mathcal{M}}\right] \\
S_{y} A_{3}^{V}+\frac{S_{z}}{M} p_{y} \widetilde{A}_{2}^{V}+\frac{\mathbf{p}_{\perp} \cdot \mathbf{S}_{\perp}}{M^{2}} p_{y} \widetilde{A}_{3}^{V}= \\
c\left[S_{y} \mathcal{B}_{1, \mathcal{M}}+\frac{k_{y}}{k_{\perp}}\left(\mathbf{S} \cdot \hat{\mathbf{k}}_{\perp}\right) \mathcal{B}_{2, \mathcal{M}}+\frac{k_{y}}{k_{\perp}}(\mathbf{S} \cdot \hat{z}) \mathcal{B}_{3, \mathcal{M}}-\frac{k_{x}}{k_{\perp}}\left[\left(\hat{\mathbf{k}}_{\perp} \times \hat{z}\right) \cdot \mathbf{S}\right] \mathcal{B}_{6, \mathcal{M}}\right]
\end{array}
$$

Transverse Momentum Distributions I

Integration on p^{+}and $p^{-}: \quad \frac{1}{2} \int \frac{d p^{+} d p^{-}}{(2 \pi)^{4}} \delta\left[p^{+}-x P^{+}\right] P^{+} \quad$ of the above equations gives the following relations between the TMDs and the quantities $b_{i, \mathcal{M}}$

$$
\begin{gathered}
f\left(x,\left|\mathbf{p}_{\perp}\right|^{2}\right)=b_{0} \\
S_{z} \Delta f+\frac{1}{M} \mathbf{p}_{\perp} \cdot \mathbf{S}_{\perp} g_{1 T}=S_{z} b_{1, \mathcal{M}}+\left(\mathbf{S} \cdot \hat{\mathbf{k}}_{\perp}\right) b_{4, \mathcal{M}}+(\mathbf{S} \cdot \hat{z}) b_{5, \mathcal{M}} \\
S_{x} a_{3}^{V}+\frac{S_{z}}{M} p_{x} h_{1 L}^{\perp}+\frac{\mathbf{p}_{\perp} \cdot \mathbf{S}_{\perp}}{M^{2}} p_{x} h_{1 T}^{\perp}= \\
=S_{x} b_{1, \mathcal{M}}+\frac{k_{x}}{k_{\perp}}\left(\mathbf{S} \cdot \hat{\mathbf{k}}_{\perp}\right) b_{2, \mathcal{M}}+\frac{k_{x}}{k_{\perp}}(\mathbf{S} \cdot \hat{z}) b_{3, \mathcal{M}}+\frac{k_{y}}{k_{\perp}}\left[\left(\hat{\mathbf{k}}_{\perp} \times \hat{z}\right) \cdot \mathbf{S}\right] b_{6, \mathcal{M}} \\
S_{y} a_{3}^{V}+\frac{S_{z}}{M} p_{y} h_{1 L}^{\perp}+\frac{\mathbf{p}_{\perp} \cdot \mathbf{S}_{\perp}}{M^{2}} p_{y} h_{1 T}^{\perp}= \\
=S_{y} b_{1, \mathcal{M}}+\frac{k_{y}}{k_{\perp}}\left(\mathbf{S} \cdot \hat{\mathbf{k}}_{\perp}\right) b_{2, \mathcal{M}}+\frac{k_{y}}{k_{\perp}}(\mathbf{S} \cdot \hat{z}) b_{3, \mathcal{M}}-\frac{k_{x}}{k_{\perp}}\left[\left(\hat{\mathbf{k}_{\perp}} \times \hat{z}\right) \cdot \mathbf{S}\right] b_{6, \mathcal{M}}
\end{gathered}
$$

where

$$
a_{3}^{V}=\frac{1}{2} \int \frac{d p^{+} d p^{-}}{(2 \pi)^{4}} \delta\left[p^{+}-x P^{+}\right] P^{+} A_{3}^{V}
$$

Transverse Momentum Distributions II

The transverse momentum distributions are obtained as integrals of $A_{j}, \widetilde{A}_{j}(j=1,2,3)$ on p^{+}and $p^{-} \quad$ [Barone, Drago, Ratcliffe, Phys. Rep. 359, 1 (2002)]

$$
\begin{aligned}
& f\left(x, \mathbf{p}_{\perp}^{2}\right)=\int \frac{d p^{+} d p^{-} P^{+}}{2(2 \pi)^{4}} \delta\left[p^{+}-x P^{+}\right] A_{1} \\
& \Delta f\left(x,\left|\mathbf{p}_{\perp}\right|^{2}\right)=\frac{1}{2} \int \frac{d p^{+} d p^{-}}{(2 \pi)^{4}} \delta\left[p^{+}-x P^{+}\right] P^{+} A_{2} \\
& g_{1 T}\left(x,\left|\mathbf{p}_{\perp}\right|^{2}\right)=\frac{1}{2} \int \frac{d p^{+} d p^{-}}{(2 \pi)^{4}} \delta\left[p^{+}-x P^{+}\right] P^{+} \widetilde{A}_{1} \\
& \Delta_{T}^{\prime} f\left(x,\left|\mathbf{p}_{\perp}\right|^{2}\right)=\frac{1}{2} \int \frac{d p^{+} d p^{-}}{(2 \pi)^{4}} \delta\left[p^{+}-x P^{+}\right] P^{+}\left(A_{3}+\frac{\left|\mathbf{p}_{\perp}\right|^{2}}{2 M^{2}} \widetilde{A}_{3}\right) \\
& h_{1 L}^{\perp}\left(x,\left|\mathbf{p}_{\perp}\right|^{2}\right)=\frac{1}{2} \int \frac{d p^{+} d p^{-}}{(2 \pi)^{4}} \delta\left[p^{+}-x P^{+}\right] P^{+} \widetilde{A}_{2} \\
& h_{1 T}^{\perp}\left(x,\left|\mathbf{p}_{\perp}\right|^{2}\right)=\frac{1}{2} \int \frac{d p^{+} d p^{-}}{(2 \pi)^{4}} \delta\left[p^{+}-x P^{+}\right] P^{+} \widetilde{A}_{3}
\end{aligned}
$$

The obtained relations between the TMDs and the quantities $b_{i, \mathcal{M}}$ allow one to express the TMDs in terms of the $b_{i, \mathcal{M}}$

Transverse Momentum Distributions III

Then in valence approximation one has

$$
\begin{aligned}
f\left(x,\left|\mathbf{p}_{\perp}\right|^{2}\right) & =b_{0} \\
\Delta f\left(x,\left|\mathbf{p}_{\perp}\right|^{2}\right) & =\left\{b_{1, \mathcal{M}}+b_{5, \mathcal{M}}\right\}
\end{aligned}
$$

For ${ }^{3} \mathrm{He}$ the transverse momentum

$$
g_{1 T}\left(x,\left|\mathbf{p}_{\perp}\right|^{2}\right)=\frac{M}{\left|\mathbf{p}_{\perp}\right|} b_{4, \mathcal{M}}
$$

distributions can be accurately

$$
\begin{aligned}
\Delta_{T}^{\prime} f\left(x,\left|\mathbf{p}_{\perp}\right|^{2}\right) & =\frac{1}{2}\left\{2 b_{1, \mathcal{M}}+b_{2, \mathcal{M}}+b_{6, \mathcal{M}}\right\} \\
h_{1 L}^{\perp}\left(x,\left|\mathbf{p}_{\perp}\right|^{2}\right) & =\frac{M}{\left|\mathbf{p}_{\perp}\right|} b_{3, \mathcal{M}} \\
h_{1 T}^{\perp}\left(x,\left|\mathbf{p}_{\perp}\right|^{2}\right) & =\frac{M^{2}}{\left|\mathbf{p}_{\perp}\right|^{2}}\left\{b_{2, \mathcal{M}}-b_{6, \mathcal{M}}\right\}
\end{aligned}
$$

In the case of ${ }^{3} \mathrm{He}$ the TMDs could be obtained through measurements of appropriate spin asymmetries in ${ }^{3} H e\left(e, e^{\prime} p\right)$ experiments at high momentum transfer.
Let us remind that

$$
n_{\sigma \sigma^{\prime}}^{\tau}\left(x, \mathbf{k}_{\perp} ; \mathcal{M}, \mathbf{S}\right)=
$$

$=\frac{2(-1)^{\mathcal{M}+1 / 2}}{(1-x)} \int d k_{23}\left\{\mathcal{Z}_{\sigma \sigma^{\prime}}^{\tau}\left(x, \mathbf{k}_{\perp}, k_{23}, L=0, \mathbf{S}\right)+\mathcal{Z}_{\sigma \sigma^{\prime}}^{\tau}\left(x, \mathbf{k}_{\perp}, k_{23}, L=2, \mathbf{S}\right)\right\}$
L is the orbital angular momentum of the one-body off-diagonal density matrix. Then the TMDs receive contributions from $L=0$ and $L=2$.

Transverse Momentum Distributions IV

Linear equalities between the transverse parton distributions were proposed
[Jacob, Mulders, Rodrigues, Nucl. Phys. A 626, 937 (1997); Pasquini, Cazzaniga, Boffi, Phys. Rev. D 78, 034025 (2008); Lorce', Pasquini, Phys. Rev. D 84, 034039 (2011)]

$$
\begin{gathered}
\Delta f\left(x,\left|\mathbf{p}_{\perp}\right|^{2}\right)=\Delta_{T}^{\prime} f\left(x,\left|\mathbf{p}_{\perp}\right|^{2}\right)+\frac{\left|\mathbf{p}_{\perp}\right|^{2}}{2 M^{2}} h_{1 T}^{\perp}\left(x,\left|\mathbf{p}_{\perp}\right|^{2}\right) \\
g_{1 T}\left(x,\left|\mathbf{p}_{\perp}\right|^{2}\right)=-h_{1 L}^{\perp}\left(x,\left|\mathbf{p}_{\perp}\right|^{2}\right)
\end{gathered}
$$

One finds that these equalities hold exactly in valence approximation when the contribution to the transverse momentum distributions from the angular momentum $L=2$ is absent.
As far as the quadratic relation discussed in the above papers is concerned

$$
\left(g_{1 T}\right)^{2}+2 \Delta_{T}^{\prime} f h_{1 T}^{\perp}=0
$$

in our approach it does not hold, even if the contribution from the angular momentum $L=2$ is absent, because of the presence of $\int d k_{23}$ in the expressions of the transverse momentum distributions.

Conclusions an Perspectives I

- A Poincaré covariant description of nuclei, based on the light-front Hamiltonian dynamics, has been proposed. The Bakamjian-Thomas construction of the Poincaré generators allows one to embed the successful phenomenology for few-nucleon systems in a Poincaré covariant framework.
- The definition of the nucleon momentum κ in the intrinsic reference frame of the cluster $(1,23)$ and the use of the tensor product of a plane wave of momentum κ times the state of a fully interacting spectator subsystem allows one to take care of macrocausality and to introduce a new effect of binding in the spectral function.
- Normalization and momentum sum rule are satisfied at the same time
- The LF spectral function can be used to evaluate DIS or SIDIS processes. A calculation of DIS processes based on our spectral function will indicate which is the gap with respect to the experimental data to be filled by effects of non-nucleonic degrees of freedom or by modifications of nucleon structure in nuclei.

Conclusions an Perspectives II

- A first test of our approach is the EMC effect for ${ }^{3} \mathrm{He}$.

 The spectral function has been obtained from the non-relativistic wave function with the AV18 NN interaction. The full expression for the 2-body contribution has been used. Encouraging improvements clearly appear with respect to a convolution approach.- Next step : full calculation of the 3-body contribution
- The LF spin-dependent spectral function for a spin $1 / 2$ system composed by three fermions (as the ${ }^{3} \mathrm{He}$ or a nucleon in valence approximation) can be expressed through 7 functions $\mathcal{B}_{i, \mathcal{M}}\left[\left|\mathbf{k}_{\perp}\right|, x, \epsilon,\left(\mathbf{S} \cdot \hat{\mathbf{k}}_{\perp}\right)^{2},(\mathbf{S} \cdot \hat{z})^{2}\right]$. An analogous expression occurs for the spin-dependent momentum distribution in terms of seven functions $b_{i, \mathcal{M}}\left[\left|\mathbf{k}_{\perp}\right|, x,\left(\mathbf{S} \cdot \hat{\mathbf{k}}_{\perp}\right)^{2},(\mathbf{S} \cdot \hat{z})^{2}\right]$.
- We intend to evaluate the transverse momentum distributions for ${ }^{3} \mathrm{He}$, that could be extracted from measurements of appropriate spin asymmetries in ${ }^{3} \mathrm{He}\left(e, e^{\prime} p\right)$ experiments at high momentum transfer.
- The linear relations proposed between the TMDs hold in valence approximation whenever the contribution from the $\mathrm{L}=2$ orbital angular momentum of the one-body off-diagonal density matrix is absent.

Preliminary results for ${ }^{3} \mathrm{He}$ EMC effect

Pace, Del Dotto, Kaptari, Rinaldi, Salmè, Scopetta,
Few-Body Sist. 57(2016)601

$$
R_{2}^{A}(x)=\frac{A F_{2}^{A}(x)}{Z F_{2}^{p}(x)+(A-Z) F_{2}^{n}(x)}
$$

- Solid line: LF Spectral Function, with the exact calculation for the 2-body channel, and an average energy in the 3-body contribution: $\left\langle\bar{k}_{23}\right\rangle=113.53 \mathrm{MeV}$ (proton), $\left\langle\bar{k}_{23}\right\rangle=91.27 \mathrm{MeV}$ (neutron).
- Dotted line: convolution model for the LF momentum distribution as in Oelfke, Sauer, Coester, Nucl. Phys. A 518, 593 (1990)
Improvements clearly appear with respect to the convolution result. The next step will be the full calculation of the EMC effect for 3 He , including the exact 3 -body contribution. !

