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Relativistic structure

Non-relativistically...

Point particles are delta functions in configuration space.
Point particle described by plane wave in momentum space.
(These are related by Fourier transform.)

Charge distribution is a function ρ(r) of r.
Momentum space description given by form factor F (Q2).
(These are related by Fourier transform.)
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Relativistic structure
Relativistically...

Point particles are not delta functions in configuration space.
Point particle described by plane wave in momentum space.
(These are not related by Fourier transform.)

Charge distribution is not a function ρ(r) of r.
Momentum space description given by form factor F (Q2).
(These are not related by Fourier transform.)

(cf. any comment by Jerry.)

Relativity mucks up configuration space descriptions of many-body systems.

We opt to take relativity seriously.

Any description of 3D partonic structure should be a Lorentz-invariant function of
Lorentz-invariant variables.

Generalized parton distributions (GPDs) are exactly the kind of structure we
need.
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Generalized parton distributions

Look at leading twist GPDs. The partonic correlator is defined diagrammatically
(leading twist approximation):

k k′
p p′

≈
p

k′k
p′

Ô

The operator Ô depends on helicity-independent, axial, etc.:

ÔV = /nδ(n · [xP −K]) ÔA = /nγ5δ(n · [xP −K])

The GPDs are Lorentz-invariant functions that fall out of these matrix elements.
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GPDs of the nucleon

An example: leading-twist GPDs of the nucleon.

〈p′, λ′|/nδ(n · [xP −K])|p, λ〉 = ū(p′, λ′)

[
/nHN (x, ξ, t) +

iσn∆

2mN
EN (x, ξ, t)

]
u(p, λ)

Similar to form factor decomposition.

HN and EN are the nucleon GPDs.

Defined wrt a lightlike four-vector n.

Depend on four Lorentz scalars, the
last being a factorization scale µF
(dependence not notated here).

Lorentz-covariant 3D structure!

P =
1

2
(p+ p′) x =

K · n
P · n

K =
1

2
(k + k′) ξ = − ∆ · n

2P · n
∆ = P ′ − P t = ∆2

Caveat: twist decomposition depends on choice of n.
cf. [V. Braun et al., PRD89 (2014), 074022]

Choice of n should be informed by process.
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Reductions of nucleon GPDs

Nucleon GPDs correspond to familiar quantities through limits or sum rules.

Sum rules for Dirac and Pauli form factors:∫ 1

−1
Hq
N (x, ξ, t)dx = F q1N (t)

∫ 1

−1
EqN (x, ξ, t)dx = F q2N (t)

Note that ξ dependence vanishes in integral. (Special case of polynomiality)

Forward limit for PDFs:

Hq
N (x, 0, 0) = q(x)

We use x ∈ [−1, 1], with the meaning:

q(−x) = −q̄(x)
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The variables in the GPDs

Let’s take a quick pictorial look at the GPD variables.

x + ξ x − ξ

1 + ξ 1 − ξ

P =
1

2
(p+ p′) x =

K · n
P · n

K =
1

2
(k + k′) ξ = − ∆ · n

2P · n
∆ = P ′ − P t = ∆2

Light cone fractions defined wrt (P · n).

x is average momentum fraction of parton at both vertices.

x > 0 quarks/gluons; x < 0 antiquarks/gluons.

The skewness (2ξ) is the fraction lost by the target.
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Differing conventions

Personally, I get confused because there are many differing notational conventions.
I’ll explicitly define the conventions I’m using here:

P =
1

2
(p+ p′) K =

1

2
(k + k′)

x =
K · n
P · n∈ [−1, 1] xA = Ax ∈ [−A,A]

ξ = − ∆ · n
2P · n∈ [−1, 1] ξA = Aξ ∈ [−A,A]

Note that if I write x rather than xA, it is not scaled by A.

Yes, there’s a good reason to use x (rather than xA) even for nuclear systems: higher
Mellin moments in xA pick up extra powers of A that make things messy and confusing!

I’ll use xA at the end, but it will be explicitly notated.
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Covariance and Polynomiality
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Polynomiality rules for the nucleon
Nucleon GPDs are known to obey polynomiality sum rules [X. Ji, J.Phys. G24 (1998)
1181]: ∫ 1

−1
xsHN (x, ξ, t)dx =

s∑
l=0
2|l

As+1,l(t)(2ξ)
l + mod(s, 2)CN (t)(2ξ)s+1

∫ 1

−1
xsEN (x, ξ, t)dx =

s∑
l=0
2|l

Bs+1,l(t)(2ξ)
l −mod(s, 2)CN (t)(2ξ)s+1

A, B, and C are called generalized form factors.

These rules are a result of Lorentz covariance.

They are violated for models that break covariance (e.g., models with Fock
space truncations or which use non-relativistic nuclear wave functions).

Spin-1 systems will have polynomiality rules too (due to Lorentz symmetry).
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Polynomiality sum rules for the deuteron
I have derived the following sum rules for spin-1 systems (with x ∈ [−1, 1] convention):

∫ 1

−1
xsH1(x, ξ, t)dx =

s∑
l=0
2|l

As+1,l(t)(2ξ)
l+mod(s, 2)Fs+1(t)(2ξ)s+1

∫ 1

−1
xsH2(x, ξ, t)dx =

s∑
l=0
2|l

Bs+1,l(t)(2ξ)
l

∫ 1

−1
xsH3(x, ξ, t)dx =

s∑
l=0
2|l

Cs+1,l(t)(2ξ)
l+mod(s, 2)Gs+1(t)(2ξ)s+1

∫ 1

−1
xsH4(x, ξ, t)dx =

s∑
l=1
2-l

Ds+1,l(t)(2ξ)
l

∫ 1

−1
xsH5(x, ξ, t)dx =

s−1∑
l=0
2|l

Es+1,l+1(t)(2ξ)l.

Only H1 and H3 (related to electric charge distribution, but not magnetic) have the (2ξ)s+1 term.
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Special cases of generalized form factors
The first Mellin moments (s = 0) give electromagnetic form factors:∫ 1

−1

H1(x, ξ, t)dx = F1(t)

∫ 1

−1

H2(x, ξ, t)dx = F2(t)∫ 1

−1

H3(x, ξ, t)dx = F3(t)

∫ 1

−1

H4(x, ξ, t)dx =

∫ 1

−1

H5(x, ξ, t)dx = 0.

Forward limits relate the GPDs to parton distribution functions:

H1(x, 0, 0) = f(x) H5(x, 0, 0) = b1(x)

(No forward limits defined for the other GPDs.)
Combining these entails valence version of Kumano-Close sum rule:∫ 1

−1

b1(x)dx = 0

Violation of the usual Kumano-Close sum rule is possible, and would indicate tensor polarization
in the sea.
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Special cases of generalized form factors
The second Mellin moments (s = 1) give gravitational form factors:∫ 1

−1

xH1(x, ξ, t)dx = G1(t) + (2ξ)2G3(t)

∫ 1

−1

xH2(x, ξ, t)dx = G5(t)∫ 1

−1

xH3(x, ξ, t)dx = G2(t) + (2ξ)2G4(t)

∫ 1

−1

xH4(x, ξ, t)dx = (2ξ)G6(t)∫ 1

−1

xH5(x, ξ, t)dx = G7(t)
∑

partons

G7(t) = − t

2M2
D

∑
partons

G6(t)

(Notation from Simonetta’s papers, modulo small differences like factors of 2.)
The last relation is a consequence of energy-momentum conservation.
It also entails: ∑

partons

∫ 1

−1

xb1(x)dx = 0

Violation of this sum rule over quarks alone would indicate momentum-sharing with gluons.
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GFFs and the matter distribution
One can construct a monopole gravitational form factor for a spin-one system:

GN (t) =

(
1 +

2

3
τ

)
G1(t)− 2

3
τG5(t) +

2

3
τ(1 + τ)G2(t)

where τ = −t/(4M2
D).

(Analogous to the Coulomb electric form factor. N is for Newton.)
Related to a gravitational radius:

〈r2
G〉 = 6

d

dt
[GN (t)]

This should look very familiar to the charge radius! But:

rG 6= rE ,

The model I’ll present soon gives:

rE = 2.09 fm rG = 1.95 fm
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GFFs and much more

There’s even more information hidden in GFFs.
That’s either generalized or gravitational form factor.

Taneja et al. (Phys.Rev. D86 (2012) 036008) tell us that

J(t) =
1

2
G5(t)

We can learn how quarks and gluons share and distribute their angular momentum!

Also, the purely spacelike components of the stress-energy tensor give shears and pressures:

G3(t), G4(t), and G6(t) all contribute to these.

In particular, both G3(t) and G6(t) contribute to Polyakov’s and Schweitzer’s coveted static
quantity D.

This is an ongoing topic of research with Simonetta, Whit, and Ian.
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Convolution Formalism
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GPD convolution

A real nucleus has modifications (EMC effect—the whole point of this workshop!).

But the “EMC effect” exists as a discrepancy with a baseline prediction.

So what do nuclear GPDs look like if we assume unmodified nucleons?

〈p′, λ′|Oq|p, λ〉 =
∑

nucleons

...
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Unmodified convolution formalism

To have an EMC effect for the GPDs, we need an unmodified convolution formalism.
This is ostensibly straightforward:

Get a model for the nucleon GPDs HN and EN .
Compute the matrix element

〈p′, λ′|
[
/nHN +

iσn∆

2mN
EN

]
|p, λ〉

assuming pointlike, on-shell nucleons.
(The factors HN and EN fold in the non-pointlike structure.)

An ambiguity arises: identities like Gordon decomposition that are true for on-shell nucleons
will lead to different results for kinematically off-shell nucleons.

This turns out to matter for the nucleon D-terms.
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The D-term and Gordon decomposition

In models such as [Goeke et al., Prog. Part. Nucl. Phys. 47 (2001)], the nucleon GPD is broken
into a double distribution and a D-term:

HN (x, ξ, t) = HDD(x, ξ, t) +D

(
x

ξ
, t

)
EN (x, ξ, t) = EDD(x, ξ, t)−D

(
x

ξ
, t

)

The D-term here contributes to the (2ξ)s+1 GFF in the polynomiality sum rules.

The same D-term enters both HN and EN with opposite sign.

This is due to Lorentz invariance. [X. Ji, J.Phys. G24 (1998) 1181]

Using Gordon decomposition, we can write:

ū(p′, σ′)

[
/nHN +

iσn∆

2mN
EN

]
u(p, σ) = ū(p′, σ′)

[
/nHDD +

iσn∆

2mN
EDD +

p · n
mN

DN

]
u(p, σ)

for on-shell spinors.
We must decide between the LHS and RHS for the “unmodified” deuteron GPD.
(I’ve chosen the RHS since it emphasizes there is one nucleon D-term.)
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The master convolution formula
Evaluating the matrix element

〈p′, λ′|
[
/nHDD +

iσn∆

2mN
EDD +

PN · n
mN

DN

]
|p, λ〉

gives a master convolution formula:

Hi(x, ξ, t) =

∫ 1

−1

dy

y

[
hi(y, ξ, t)HDD

(
x

y
,
ξ

y
, t

)
+ ei(y, ξ, t)EDD

(
x

y
,
ξ

y
, t

)
+ ydi

(
y

ξ
, t

)
DN

(
x

ξ
, t

)]
(cf. also work by Sergio, Simonetta.)

hi, ei, and di describe how the nucleons are distributed in the nucleus, using GPD language.
Call them generalized nucleon distributions (GNDs).

By construction, HDD, EDD, and DN already obey polynomiality.

We can prove that when the GNDs obey polynomiality sum rules, so do the deuteron GPDs.

The only ingredient needed to ensure the GNDs observe polynomiality is a
Lorentz-covariant model of nuclear structure.
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Discrete convolution formulas
The master convolution formula entails a collection of discrete convolution formulas for the
generalized form factors.

Define “generalized body form factors” from the GNDs, e.g.,∫ 1

−1

ysh1(y, ξ, t)dy =

s∑
l=0
2|l

AHs+1,l(t)(2ξ)
l + mod(s, 2)FHs+1(t)(2ξ)s+1

with similar relations for all i, for ei, and for di.

The full GFFs can be found through, e.g.:

As+1,l(t) =

l∑
r=0
2|r

[
AHs−r+1,l−r(t)A

N
s+1,r(t) +AEs−r+1,l−r(t)B

N
s+1,r(t)

]

Similar relations for B through E , except D involves odd r.

F and G are slightly more complicated (they have an extra term).
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Discrete convolution formulas
Convolution formulas for F and G:

Fs+1(t) =

s∑
r=0
2|r

[
FHs−r+1(t)ANs+1,r(t) + FEs−r+1(t)BNs+1,r(t)

]
+AD1,0CNs+1(t)

Gs+1(t) =

s∑
r=0
2|r

[
GHs−r+1(t)ANs+1,r(t) + GEs−r+1(t)BNs+1,r(t)

]
+CD1,0CNs+1(t)

A reminder that these originate from Mellin moments of H1 and H3:∫ 1

−1

xsH1(x, ξ, t)dx =

s∑
l=0
2|l

As+1,l(t)(2ξ)
l + mod(s, 2)Fs+1(t)(2ξ)s+1

∫ 1

−1

xsH3(x, ξ, t)dx =

s∑
l=0
2|l

Cs+1,l(t)(2ξ)
l + mod(s, 2)Gs+1(t)(2ξ)s+1
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Utility of discrete convolution

There is a point to these discrete convolutions.
Say we want deuteron electric form factors:

FiD(t) = FiV (t)[F1p(t) + F1n(t)] + FiT (t)[F2p(t) + F2n(t)]

FiV and FiT (“body form factors”) are matrix elements of /n and iσn∆/(2mN ), respectively.

This is an easy calculation, bypassing a full GPD computation followed by an additional
integration over x (which would be expensive in core-hours!).

Say we want deuteron gravitational form factors:

Gi(t) = GiV (t)[Ap(t) +An(t)] + GiT (t)[Bp(t) +Bn(t)]+G(i−2)D(t)[Cp(t) + Cn(t)]

(the pink terms contribute only for i = 3, 4).

GiV , GiT , and G(i−2)D are matrix elements of i(n · ←→∂ )/n, i(n · ←→∂ )σn∆/(2mN ), and 1/mN ,
respectively.

This again bypasses an expensive computation.
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Covariant Contact Model
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Motivation for a contact model

For computing the GPDs themselves, covariance is of the utmost importance.

Can be difficult to maintain covariance while solving a bound state equation.

Covariantly solving a four-Fermi contact interaction is tractable.

Success of the Nambu-Jona-Lasinio (NJL) model suggests this approach has promise.

The skeptic may ask: what about the deuteron’s D-wave?
What about the deuteron’s huge quadrupole moment?

The magic of relativity will produce these things, even in a contact interaction model.
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Lagrangian

Construct most general possible NN Lagrangian that:

Has four-fermi contact interactions.
Has no derivatives in interaction terms.
Obeys SU(2)V × SU(2)A isospin symmetry.

Satisfies Pauli exclusion principle (enforced by ψ being
Grassmann-number-valued!).

LNN = ψ̄(i/∂ −m)ψ

−GS
[(
ψ̄τjCτ2ψ̄

T
) (
ψTC−1τ2τjψ

)
−
(
ψ̄τjγ

5Cτ2ψ̄
T
) (
ψTC−1τ2γ

5τjψ
)]

−GV
[(
ψ̄τjγ

5γµCτ2ψ̄
T
) (
ψTC−1τ2γ

5γµτjψ
)

+
(
ψ̄γµCτ2ψ̄

T
) (
ψTC−1τ2γµψ

)]
− 1

2
GT
[(
ψ̄iσµνCτ2ψ̄

T
) (
ψTC−1τ2iσµνψ

)]
Neglect charge-symmetry violation (assume mp = mn ≡ mN ).
Interactions decouple into separate isoscalar and isovector sectors.
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Bethe-Salpeter vertex

Bethe-Salpeter equation in the covariant contact model:

k

p

k

p

k̄

=

Solution is the Bethe-Salpeter vertex:

ΓD(p, λ) =

[
αV /ε(p, λ) + iαT

σεp

2MD

]
Cτ2

We can solve for αV and αT in terms of couplings GV and GT . . . and a UV regulator Λ
(from proper time regularization).
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Solution and static observables

Solution has parameters: GV , GT , and Λ.
These must be chosen somehow.
Fit to static observables:

Deuteron binding energy

Deuteron electromagnetic moments
3S1-3D1 scattering parameters.

Contact model Empirical

εD (MeV) 2.18 2.22
rE (fm) 2.09 2.14
µD 0.879 0.857

QD (fm2) 0.285 0.286
3a1 (fm) 5.26 5.42
3r1 (fm) 1.78 1.76

Λ (MeV) 139 —
GV (GeV−2) -683 —
GT (GeV−2) -715 —

Λ = 139 MeV is a result of a fit—is not chosen by us.

Suggests the model “knows” it breaks down when pion exchange becomes relevant.

Note we have a non-zero, almost correct quadrupole moment.

We do actually have a D-wave!
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Origin of the D-wave

Whence the D-wave?
Bethe-Salpeter wave function takes the form

ψD(p, k, λ) = S(k)ΓD(p, λ)ST (p− k)

The numerator of the top-right 2× 2 corner (where both nucleons have positive energy):

ψ
(++)
D (p, k, λ) ∝ mN (MD +mN )(αV + αT )(ε · σ) + 2(αV − αT )(k · ε)(k · σ)

D-wave comes from second part of structure.
Ensures that even non-relativistic reductions, with:

ψNR(p, k, λ) ∝ ū(k, s1)ΓD(p, λ)ūT (p− k, s2)

have D-wave—that is, (k · ε)(k · σ) terms—in them.
Answer to whence: the lower components of u! This is a relativistic effect.
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DIS structure functions
How well can this model describe DIS structure functions?
(Use CJ15 for nucleon PDFs.)
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HERMES data

Not bad for F2(x,Q2) (underestimate at high x due to lack of short range correlations).

Doesn’t describe HERMES data for b1(x,Q2), but that’s expected.
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Electromagnetic form factors

What about electromagnetic form factors?
(Use Kelly-Riordan nucleon form factors ... Blue is full model, orange is GV only.)
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Absolute size is too big at moderate-to-large Q2.

Agreement is OK for Q2 . 0.5 GeV2.

Suggests our GPDs will be applicable to only low −t.

A. Freese (ANL) Deuteron GPDs April 18, 2018 30 / 41



Gravitational form factors
Let’s see what the gravitational form factors look like.
(Summed over all partons ... nucleon GPD model from [Goeke et al., Prog. Part. Nucl. Phys 47 (2001)].)
No data due to lack of graviton exchange dominated scattering experiments...
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Gravitational form factors
Features of the monopole-dominated GFFs.
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G1(t) is the analogoue of electromagnetic F1(t).

G1(0) = 1 is a mass sum rule—it’s a statement of energy conservation.

G3(t) dominates the Polyakov-Schweitzer D. It’s related to internal balancing of forces.
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Gravitational form factors
Features of the quadrupole-dominated GFFs.
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G2(t) is the analogoue of electromagnetic F3(t).
Deuteron has a large gravitational quadrupole moment. Large tidal forces for a small nucleus.
G4(t) is a (2ξ)s+1 term—it seems like a “second deuteron D-term”—mandated by the
deuteron’s quadrupole moment.

A. Freese (ANL) Deuteron GPDs April 18, 2018 33 / 41



Gravitational form factors
Features of the other GFFs.
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G5(t) is angular momentum distribution. (See Simonetta’s talk.)

G6(t) is a tensor polarization. (It’s small, like b1(x).)
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Generalized parton distributions
So, what do the coveted deuteron GPDs actually look like?
Look at ξ = 0; has clearer correspondences with well-known PDFs and form factors.
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Generalized parton distributions

Let’s take a closer look... at H1(xA, ξA, t).

finite skewness−−−−−−−−−→

H1(xA, ξA, t) is monopole-dominated.

Forward limit (ξA = 0, t = 0) is old-fashioned PDF.

Region −ξA < xA < ξA (“ERBL region”) is dominated by D-term.
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Generalized parton distributions

Closer look at H2(xA, ξA, t).

finite skewness−−−−−−−−−→

H2(xA, ξA, t) is spin-dominated.

Ridges at xA = ±ξA, despite lack of D-term.
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Generalized parton distributions

Closer look at H3(xA, ξA, t).

finite skewness−−−−−−−−−→

H3(xA, ξA, t) is quadrupole-dominated.

The absolute magnitude is large because of the large quadrupole moment.

ERBL region is dominated by D-term.
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Generalized parton distributions

Closer look at H4(xA, ξA, t).

finite skewness−−−−−−−−−→

H4(xA, ξA, t) is dominated by tensor polarization.

This GPD has neither a forward limit, nor a relation to EM form factors.

It’s zero at ξA = 0 because it is odd in ξA.
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Generalized parton distributions

Closer look at H5(xA, ξA, t).

finite skewness−−−−−−−−−→

H5(xA, ξA, t) is tensor polarization dominated.

Forward limit (ξA = 0, t = 0) is partonic b1(x).
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Conclusions and outlook

In conclusion:

We have calculated deuteron GPDs in a manifestly covariant contact model.

Our GPDs obey polynomiality sum rules, and allow an unambiguous extraction of
generalized form factors.

We have computed gravitational form factors within this model, too.

Future work to be done:

The model will be extended to other light nuclei (triton and helium).

The NJL model can be used to compute covariant nucleon GPDs.

A deeper understanding of the stress-energy tensor and gravitational form factors for
spin-1 systems is needed.
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