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Relativistic structure

Non-relativistically...

e Point particles are delta functions in configuration space.

Point particle described by plane wave in momentum space.

(These are related by Fourier transform.)

e Charge distribution is a function p(r) of r.
Momentum space description given by form factor F(Q?).
(These are related by Fourier transform.)
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Relativistic structure
Relativistically...

e Point particles are not delta functions in configuration space.
Point particle described by plane wave in momentum space.
(These are not related by Fourier transform.)

e Charge distribution is not a function p(r) of r.
Momentum space description given by form factor F(Q?).
(These are not related by Fourier transform.)

(cf. any comment by Jerry.)
o Relativity mucks up configuration space descriptions of many-body systems.
o We opt to take relativity seriously.

@ Any description of 3D partonic structure should be a Lorentz-invariant function of
Lorentz-invariant variables.

Generalized parton distributions (GPDs) are exactly the kind of structure we
need.
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Generalized parton distributions

Look at leading twist GPDs. The partonic correlator is defined diagrammatically
(leading twist approximation):

Y N A
P k// \ 2 P g $ P

k/
= = =

The operator @ depends on helicity-independent, axial, etc.:

Oy =1#d(n - [zP — K]) Oa = 9hys50(n - [zP — K])

The GPDs are Lorentz-invariant functions that fall out of these matrix elements.
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GPDs of the nucleon

An example: leading-twist GPDs of the nucleon.

- _nA

W N80 - [oP = KDIp.N) = a(p!, X) [ (z,6,8) + 5 —

EN(w7£7t) U(p, )‘)

e Similar to form factor decomposition. 1 / ~ K-n
e Hy and Ej are the nucleon GPDs. . A n
‘n
e Defined wrt a lightlike four-vector n. K= i(k + k) E=— 5P n
@ Depend on four Lorentz scalars, the A=P _Pp = A2
last being a factorization scale up
(dependence not notated here). Caveat: twist decomposition depends on choice of n.

cf. [V. Braun et al., PRD89 (2014), 074022]

_ i |
o Lorentz-covariant 3D structure! Choice of n should be informed by process.
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Reductions of nucleon GPDs

Nucleon GPDs correspond to familiar quantities through limits or sum rules.

@ Sum rules for Dirac and Pauli form factors:
1 1
/ Hi (o, 0 = Fiy(0) / B (o6, t)do = Fi (0

Note that & dependence vanishes in integral. (Special case of polynomiality)
e Forward limit for PDFs:

H;]V('x’ 0, 0) = Q(:C)

We use x € [—1,1], with the meaning:
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The variables in the GPDs

Let’s take a quick pictorial look at the GPD variables.

1 K- n

, P=_(p+) v =

$+§ " \_5 21 AP-,L
K=-(k+k) ¢=-—""

)= 2 2P -n

1+¢ 1—¢ A=P —-P t=A?

e Light cone fractions defined wrt (P - n).

e x is average momentum fraction of parton at both vertices.
e x > 0 quarks/gluons; x < 0 antiquarks/gluons.

o The skewness (2¢) is the fraction lost by the target.
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Differing conventions
Personally, I get confused because there are many differing notational conventions.

I’ll explicitly define the conventions I'm using here:

P= %( + ') K:%(k+k’)

:E:f;'z € [-1,1] 24 = Az € [~ A, Al
A -

§=—gp L1 Ea=Ace[-AA

Note that if I write x rather than x4, it is not scaled by A.

Yes, there’s a good reason to use z (rather than x4) even for nuclear systems: higher
Mellin moments in x 4 pick up extra powers of A that make things messy and confusing!

I'll use x4 at the end, but it will be explicitly notated.
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Covariance and Polynomiality

April 18, 2018 8 /41



Polynomiality rules for the nucleon

Nucleon GPDs are known to obey polynomiality sum rules [X. Ji, J.Phys. G24 (1998)
1181]:

1 s
/ 2 Hyy (o, €, 1) = 3 Ay (1) (26)! + mod (s, 2)C (1) (26)°+

-1

=0
20l
1 S
/1:rSEN(x, & t)dz = Bor1(t)(26)" — mod(s, 2)Cn (£)(26)*H!
- =0
20l

e A, B, and C are called generalized form factors.
@ These rules are a result of Lorentz covariance.

e They are violated for models that break covariance (e.g., models with Fock
space truncations or which use non-relativistic nuclear wave functions).

Spin-1 systems will have polynomiality rules too (due to Lorentz symmetry).
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Polynomiality sum rules for the deuteron

I have derived the following sum rules for spin-1 systems (with x € [—1, 1] convention):

1 S
/ THI@ € e = S Ave a()(26)" mod (s, 2) s ()(26)
- =0
2|1

1 S

/ ) z*Ha(z,&,t)de = Z Bs+1,l(t)(25)l
- =0
201

1 S

/ z*H3(z, &, t)de = Z C5+1’l(t)(2§)l+mod(s, 2)Gs+1 (L)(Q{)SJrl
-1 1=0
2|1

1 S
AR CITEED SENEHCIES)
- =1
o4

s—1

1
/ T Hs (@, € 1) = 3 Ern i (0(29)'
- =0
21

Only H; and Hj (related to electric charge distribution, but not magnetic) have the (2£)%*! term.
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Special cases of generalized form factors
The first Mellin moments (s = 0) give electromagnetic form factors:

1 1
/ Hl(x,g,t)dx:Fl(t) / HQ(LL’,f,t)d.’E:FQ(t)
—-1 -1

1 1 1
/ Hs(x,&,t)dx = F5(t) / Hy(z, &, t)de = / Hs(z,&,t)dz =0.
1 -1 -1

Forward limits relate the GPDs to parton distribution functions:
Hy(z,0,0) = f(x) Hs(2,0,0) = by(x)

(No forward limits defined for the other GPDs.)
Combining these entails valence version of Kumano-Close sum rule:

/11 bi(z)dx =0

Violation of the usual Kumano-Close sum rule is possible, and would indicate tensor polarization
in the sea.
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Special cases of generalized form factors
The second Mellin moments (s = 1) give gravitational form factors:

1

1
[ #te g s = Gi(0) + (266 | ata(e.& e = G50
/_ 1 cHs(z, &, t)dx = Go(t) + (26)%Gu(t) /_ 1 wHy(z, & t)dr = (26)Go(t)
|tz = G0 PO e P

(Notation from Simonetta’s papers, modulo small differences like factors of 2.)
The last relation is a consequence of energy-momentum conservation.
It also entails:

Z /11 b1 (x)dx =0

partons ¥

Violation of this sum rule over quarks alone would indicate momentum-sharing with gluons.
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GFFs and the matter distribution

One can construct a monopole gravitational form factor for a spin-one system:

Gn(t) = (1 + §T> Gi(t) — %%(t) +2 (1+7)Ga(t)

gT
where T = —t/(4M3).

(Analogous to the Coulomb electric form factor. N is for Newton.)
Related to a gravitational radius:

d
2
=6— t
(1) = 6 [Gn (1)
This should look very familiar to the charge radius! But:

TG #TE,

The model I'll present soon gives:

rg = 2.09 fm rqg = 1.95 fm
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GFFs and much more

There’s even more information hidden in GFFs.
@ That’s either generalized or gravitational form factor.

Taneja et al. (Phys.Rev. D86 (2012) 036008) tell us that

T(t) = 505(1)

We can learn how quarks and gluons share and distribute their angular momentum!

Also, the purely spacelike components of the stress-energy tensor give shears and pressures:
@ Gs(t), Gu(t), and Gg(t) all contribute to these.

@ In particular, both G3(¢) and Gg(t) contribute to Polyakov’s and Schweitzer’s coveted static
quantity D.

@ This is an ongoing topic of research with Simonetta, Whit, and Ian.
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Convolution Formalism
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GPD convolution

@ A real nucleus has modifications (EMC effect—the whole point of this workshop!).
@ But the “EMC effect” exists as a discrepancy with a baseline prediction.
@ So what do nuclear GPDs look like if we assume unmodified nucleons?

P N|OglpX) = Y

nucleons
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Unmodified convolution formalism

To have an EMC effect for the GPDs, we need an unmodified convolution formalism.
This is ostensibly straightforward:
@ Get a model for the nucleon GPDs Hy and Ey.

@ Compute the matrix element

,L'O.nA

<p/’)\/| mHN + 2

my

assuming pointlike, on-shell nucleons.
(The factors Hy and Ej fold in the non-pointlike structure.)

@ An ambiguity arises: identities like Gordon decomposition that are true for on-shell nucleons
will lead to different results for kinematically off-shell nucleons.

@ This turns out to matter for the nucleon D-terms.
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The D-term and Gordon decomposition

In models such as [Goeke et al., Prog. Part. Nucl. Phys. 47 (2001)], the nucleon GPD is broken
into a double distribution and a D-term:

HN(I',f,t) = HDD(CE',S,t) +D (z»t) EN(1'7§,t) = EDD(xvat) -D (Z,t)

@ The D-term here contributes to the (2£)*T! GFF in the polynomiality sum rules.
@ The same D-term enters both Hy and Ex with opposite sign.
@ This is due to Lorentz invariance. [X. Ji, J.Phys. G24 (1998) 1181]
Using Gordon decomposition, we can write:
"8 o i
En| u(p,o) =u(p’,o’) [Hpp +

— / ! H E pinD
u(p’,o’) |1 N+2mN ST DD+mN ~| w(p,o)

for on-shell spinors.

‘We must decide between the LHS and RHS for the “unmodified” deuteron GPD.
(I've chosen the RHS since it emphasizes there is one nucleon D-term.)
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The master convolution formula

Evaluating the matrix element

ig"A Py -n
', N |:7/LHDD + ST Epp 7]7\’11\1 } Ip, A)

gives a master convolution formula:

(cf. also work by Sergio, Simonetta.)

@ h;, e;, and d; describe how the nucleons are distributed in the nucleus, using GPD language.
Call them generalized nucleon distributions (GNDs).

@ By construction, Hpp, Epp, and Dy already obey polynomiality.
@ We can prove that when the GNDs obey polynomiality sum rules, so do the deuteron GPDs.

@ The only ingredient needed to ensure the GNDs observe polynomiality is a
Lorentz-covariant model of nuclear structure.
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Discrete convolution formulas

The master convolution formula entails a collection of discrete convolution formulas for the
generalized form factors.

@ Define “generalized body form factors” from the GNDs, e.g.,

/ v hi(y,&,t) dy—ZAsHl (£)(26)" + mod(s, 2) F 1L, () (2¢)**
- =0
21

with similar relations for all 4, for e;, and for d;.
@ The full GFFs can be found through, e.g.:

l
S+1l Z 55— r+1l T )Aé\ilr( )+'As r+1,0— 'r( )Bé\il T( )]

@ Similar relations for B through &, except D involves odd 7.
@ F and G are slightly more complicated (they have an extra term).
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Discrete convolution formulas
Convolution formulas for F and G:

S

Fora1(t) = Z [-7:5 a1 (t )AéVJrl,r(t) + f£r+1(t)Bs{V+1,r( )} +AP (JC~+1< )

r=0
2|r

Gor1(t) = Z [g£r+1(t)f4é\f+1,r(t) + gf—rﬂ(t)Bs]\err(t)] +Cf()(",é\;l<t)

r=0
2|r

A reminder that these originate from Mellin moments of H; and Hj:

o e e = 30 A (0(29) + mod(5,2) P ()(26)°*

-1 1=0
201

1
/ 2*Hg(z,&,t)de = chHl (t)(26)" + mod(s, 2)Gs 1 (£)(26)5T!

-1 1=0
201
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Utility of discrete convolution

There is a point to these discrete convolutions.
Say we want deuteron electric form factors:

Fip(t) = Fiv (t)[F1p(t) + Fiu(t)] + Fir (8) [Fap(t) + Fan(t)]

e Fyv and Fip (“body form factors”) are matrix elements of # and io™® /(2my), respectively.

@ This is an easy calculation, bypassing a full GPD computation followed by an additional
integration over z (which would be expensive in core-hours!).

Say we want deuteron gravitational form factors:

Gi(t) = Giv ([ Ap(t) + An(O)] + Gir ()[Bp(t) + B ()] +92) p ([, (1) + Cn(1)]
(the pink terms contribute only for ¢ = 3,4).

= =
® Giv, Gir, and G(;_2)p are matrix elements of i(n - 9 )i, i(n- 9 )o">/(

2my), and 1/my,
respectively.

@ This again bypasses an expensive computation.
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Covariant Contact Model
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Motivation for a contact model

For computing the GPDs themselves, covariance is of the utmost importance.

Can be difficult to maintain covariance while solving a bound state equation.

Covariantly solving a four-Fermi contact interaction is tractable.

Success of the Nambu-Jona-Lasinio (NJL) model suggests this approach has promise.

The skeptic may ask: what about the deuteron’s D-wave?
What about the deuteron’s huge quadrupole moment?

The magic of relativity will produce these things, even in a contact interaction model.
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Lagrangian

Construct most general possible NN Lagrangian that:

@ Has four-fermi contact interactions.
Has no derivatives in interaction terms.
Obeys SU(2)y x SU(2) 4 isospin symmetry.

Satisfies Pauli exclusion principle (enforced by 1 being
Grassmann-number-valued!).

Lyn = (id —m)y
— Gs [(7;C297) ( TC i) — (Y17 Crayp™) (T C 7 P 70)) ]
- Gv (7779 Crag) ™) (T CT o i) + (9" Crotp™) (w C™ )]
— §GT [(@ia“”CngjT) (wTC_ngiUWI/J)]

Neglect charge-symmetry violation (assume m, = m, = my).
Interactions decouple into separate isoscalar and isovector sectors.
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Bethe-Salpeter vertex

Bethe-Salpeter equation in the covariant contact model:

Solution is the Bethe-Salpeter vertex:

Ep

. g
FD(p7 )‘) = OéVﬁ((p, )‘) +tar

50 Cry

We can solve for ay and ag in terms of couplings Gy and Gr ...and a UV regulator A
(from proper time regularization).
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Solution and static observables

Contact model Empirical

) ' A ep (MeV) 2.18 2.22
Solution has parameters: Gy, G, and A. ri (fm) 2.09 214
These must be chosen somehow.

Fi e ob blos. D 0.879 0.857
it to static observables: Op (frn2) 0.285 0.286
e Deuteron binding energy 3a1 (fm) 5.26 5.42
e Deuteron electromagnetic moments 3rq (fm) 1.78 1.76
e 3S,-3Dy scattering parameters. A (MeV) 139 o

Gy (GeV~2) -683 —
Gr (GeV~2) -715 —

A =139 MeV is a result of a fit—is not chosen by us.

Suggests the model “knows” it breaks down when pion exchange becomes relevant.

e Note we have a non-zero, almost correct quadrupole moment.

e We do actually have a D-wave!
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Origin of the D-wave

Whence the D-wave?
Bethe-Salpeter wave function takes the form

¥p(p, k, ) = S(k)Lp(p, \)ST (p — k)

The numerator of the top-right 2 x 2 corner (where both nucleons have positive energy):

S (p, k, ) o my (Mp + my)(ay + ar)(e - @) + 2(ay — ar)(k-e)(k - o)

D-wave comes from second part of structure.
Ensures that even non-relativistic reductions, with:

UNR(Dy Ky N) o @k, s1)Tp(p, \)a’ (p — k, s2)

have D-wave—that is, (k- €)(k - o) terms—in them.
Answer to whence: the lower components of u! This is a relativistic effect.
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DIS structure functions

How well can this model describe DIS structure functions?
(Use CJ15 for nucleon PDFs.)

—— Contact model 0.003 —— Contact model
0.5 —== Pure vector —== Pure vector
. i J‘Lub.(Ql)l)b) . 0.002 L HERMES data
S04 ¢ Fermilab (1996)
5 §  HERMES (2011)
& + NMC (1992) _0.001
103 &
& £ 0.000
202
Q
) —0.001
0.1
—0.002
0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
T T

@ Not bad for Fy(x,Q?) (underestimate at high  due to lack of short range correlations).
@ Doesn’t describe HERMES data for by (z, @?), but that’s expected.
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Electromagnetic form factors

What about electromagnetic form factors?
(Use Kelly-Riordan nucleon form factors ... Blue is full model, orange is Gy only.)

10" I SLAC (1973) I sLAC (1977)
¢ Mainz (1981) 1073 ¢ Mainz (1981) 0.5
1 5
10 §  Bonn (1985) 3§  Saclay (1985) } e
, 1 Saclay (1990) 10~ §  Bomn (1985) I f S
10 T JLab (1999) 7 SLAC (1987) 001 (=77
P —107 I e
S 107 S S "
= = = 0.5 =
3 ) Q06 & g I Bates (1984)
10- ' & Novosibirsk (1985)
~ N 1077 ¥ -1.0 §  Novosibirsk (1990)
107 T 7 F T Bates (1991)
RN 10-% I ¢ R _ ¥ JLab (1999)
10-6 e ) v —L5 3 JLab (2000)
107
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Q* (GeV?) Q* (GeV?) Q* (GeV?)

@ Absolute size is too big at moderate-to-large Q2.
@ Agreement is OK for Q% < 0.5 GeV?2.
@ Suggests our GPDs will be applicable to only low —t.
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Gravitational form factors
Let’s see what the gravitational form factors look like.
(Summed over all partons ... nucleon GPD model from [Goeke et al., Prog. Part. Nucl. Phys 47 (2001)].)

No data due to lack of graviton exchange dominated scattering experiments...

2.0
—— Contact model | 95 — Contact model — Contact model |
=== Pure vector === Pure vector === Pure vector
0.8
15
0.6
= =10
0.4 <
0.2 05
00 0.0
-1.0 —0.8 —0.6 —-04 —0.2 0.0 —1.0 —0.8 —0.6 —0.4 -0.2 0.0 -1.0 —-0.8 —0.6 —0.4 —0.2 0.0
t t t
0.0 0 — Contact model
. 0.08 Pure vector
—05 -1
0.5 0.06
& 1.0 S -2 S 0.04
-15 0.02
-3
—— Contact model ~— Contact model
—2.0 Pure vector Pure vector 0.00] e

-1.0 —0.8 0.6 —0.4 —0.2 0.0 -1.0 —0.8 —0.6 =04 0.2 0.0 -1.0 —0.8 —0.6 —0.4 —0.2 0.0




Gravitational form factors
Features of the monopole-dominated GFF's.

—— Contact model
=== Pure vector

-1.0 —0.8 —0.6 —0.4 —0.2

dominates the Polyakov-Schweitzer D. It’s related to internal balancing of forces.

1o —— Contact model |
—==Pure vector 0.0
0.8
~0.5
0.6
= & —1.0]
204 <
0.2 —15
0.0 ~2.01
-10  —08 06 04 02 0.0
t
@ Gi(t) is the analogoue of electromagnetic Fi(¢).
@ G1(0) =1 is a mass sum rule—it’s a statement of energy conservation.
° Gs(t)
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Gravitational form factors
Features of the quadrupole-dominated GFFs.

254 — Contact model 01
—==Pure vector
2
20 ]
_15 -
3 S -2
10
5 —31
—— Contact model
0 === Pure vector
-1.0 —-0.8 —0.6 —0.4 —0.2 0.0 -1.0 —0.8 —0.6 —-0.4 —-0.2 0.0
t t

@ Go(t) is the analogoue of electromagnetic F(t).

@ Deuteron has a large gravitational quadrupole moment. Large tidal forces for a small nucleus.

@ Gy(t) is a (26)*T! term—it seems like a “second deuteron D-term”—mandated by the
deuteron’s quadrupole moment.
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Gravitational form factors
Features of the other GFFs.

2.0

—— Contact model —— Contact model
—== Pure vector 0.081 77 Pure vector

0.06
< 0.04

0.5 0.02

0.0

@ Gs(t) is angular momentum distribution. (See Simonetta’s talk.)
@ Gg(t) is a tensor polarization. (It’s small, like by (z).)
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Generalized parton distributions

So, what do the coveted deuteron GPDs actually look like?
Look at & = 0; has clearer correspondences with well-known PDFs and form factors.

| ot
o =
( =
ooz NI
oo Y
[ 8
Fo2 =
=
001 =
J &
—100g 7 T —100g 7
750,50 5r
029,00y
250,50 2 T
4 075100 ~10

0015
Jano §
0.0005
0.0000

B0.504,95
0.2
.00 5

z4
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Generalized parton distributions

Let’s take a closer look... at Hi(xa,&a,t).

finite skewness

"’U'%")Uo_z?\s\*\rk 7030.8 <3
e 21075, 00 ~10 X

@ Hi(x4,£a,t) is monopole-dominated.
o Forward limit ({4 =0, t = 0) is old-fashioned PDF.
@ Region —4 < x4 < &4 (“ERBL region”) is dominated by D-term.

A. Freese (ANL) Deuteron GPDs 36 /41



Generalized parton distributions

Closer look at Ha(xa,&a,t).

finite skewness

T 08
P10 ~10

-

e
0.50 0.

4

@ Hy(x4,&4,t) is spin-dominated.
@ Ridges at x4 = £&4, despite lack of D-term.




Generalized parton distributions

Closer look at Hs(xa,&a,t).

5

@

w

TaHy(wa,€4 = 0.3,4)

—
e -

finite skewness

>

—— |

TaHy(w 4,64 = 0.0, 1)

- <06
100,75 2 T —o7
00,2300 . —0.8 " OR
025, — < g &
. 050, 75 X
L4 100 —1O

@ Hj(xa,£a,t) is quadrupole-dominated.
@ The absolute magnitude is large because of the large quadrupole moment.

@ ERBL region is dominated by D-term.
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Generalized parton distributions

Closer look at Hy(za,&a,t).

S | =
2 F.nws ]
< (=)
Il n.o10 I
S i
hvd 005 “F
< % 3
& finite skewness 05
T Jf'o.uus T
& &
—0.3
e '070,5'
<06
L0073, 59 == —o7
B 05 o
25050, T =00 &
. 00.75 — X
Zy 100 —L0

® Hy(xa,£a,t) is dominated by tensor polarization.
@ This GPD has neither a forward limit, nor a relation to EM form factors.

@ It’s zero at £4 = 0 because it is odd in £4.
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Generalized parton distributions

Closer look at H5(xa,&a,t).

finite skewness

@ Hs(xa,€a,t) is tensor polarization dominated.
e Forward limit (§£4 =0, t = 0) is partonic by (z).

on GPDs

S

|
iamzs o3
o010 <
00075

00050 3
00025 =
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Conclusions and outlook

In conclusion:
@ We have calculated deuteron GPDs in a manifestly covariant contact model.

@ Our GPDs obey polynomiality sum rules, and allow an unambiguous extraction of
generalized form factors.

e We have computed gravitational form factors within this model, too.
Future work to be done:

@ The model will be extended to other light nuclei (triton and helium).

@ The NJL model can be used to compute covariant nucleon GPDs.

@ A deeper understanding of the stress-energy tensor and gravitational form factors for
spin-1 systems is needed.
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