THE QCD ENERGY MOMENTUM TENSOR IN SPIN 0, 1/2 AND 1 NUCLEI

ECT* TRENTO WORKSHOP, APRIL 18, 2018

Simonetta Liuti University of Virginia

PHYSICAL REVIEN D 94, 034041 (2016) mentum distributions

Parton transverse momentum and orbital angular

${ }^{4}$ Physics Depa
Abha Physics Department, 382 Mc Cormicpartment of Physics,

The quark integral of a 8 and momentu forward Com explicit link: transverse in determination orbital angul polarized tal
Dor: 10.110:
${ }^{3}$ University of Virginia - Physico Laboratori Nazionali di Fras of Motion Relations betwsementum, kI_{I}, of and Laborator Equation of M the parton transV (GTMDs), as a function of
We derive new Lorentz Invariance (GPDs) and moments in Distributions (Grinciple define the observ-
 twist-two Generalized Iral momentum fraction that can unam this impasse three GPDs. Out of 16 the parton longitudinal motion, experime provide a solutly measurable twis sector, we focus on three ables for partonic or relations presented here ped to directly en in the T-even asymmetries: two correspond at present. The rementum density is con that can be writ specific spin arbital angular momentum and bital angular anation of Motion relations detected analyzated with quark polarization, is a genion connecting possible Equagurations that canation and are ass transverse proton an additional rerm. to longitudinal proton polarizhird, obtained for the We also exhiord Qiu-Sterman term.
spin-orbit correlations; the the g_{2} structure function. to an off-forward Qu-Sto the relation obeyed by the g_{2} stre Sivers function to an , insiteme
"We shall therefore think of the proton as a box of partons sharing the momentum and practically free.....assume finite energy of interaction among parts so as time goes on they change their momenta, are created annifilated etc. in finite times. But moving at Carge momentum \mathcal{P} these times are dilated by the relativistic transformation so as \mathbb{P} rises things change more and more slowly until ultimately they appear as not interacting at all" ...

Feynman (Photon-Hadron Interactions)

Outline

1. DIS and OPE
2. DVCS and OPE \mapsto Moments of GPDs
3. EMT
4. EMT in QCD
5. Physical Interpretation
6. Parametrization for spin $01 / 21$
7. Sum rules \mapsto connection with moments (issue of gauge invariance)
8. Wandzura Wilczek relations

1. DIS AND OPE

From DIS Structure Functions to Parton Distributions

Im part of forward Compton Amplitude

$$
W^{\mu \nu}=\frac{1}{4 \pi} \sum_{X}(2 \pi)^{4}\langle P| J^{\mu}(0)|X\rangle\langle X| J^{v}(0)|P\rangle \delta^{4}\left(P+q-P_{X}\right)
$$

$$
=\left(-g^{\mu v}+\frac{q^{\mu} q^{v}}{q^{2}}\right) F_{1}\left(x, Q^{2}\right)+\left(P^{\mu}+\frac{(P q)}{q^{2}} q^{\mu}\right)\left(P^{v}+\frac{(P q)}{q^{2}} q^{v} \frac{F_{2}\left(x, Q^{2}\right)}{(P q)}\right.
$$

$$
F_{2}\left(x, Q^{2}\right)=x q\left(x, Q^{2}\right)+x \bar{q}\left(x, Q^{2}\right)
$$

$$
F_{2}(x)=\sum_{q} x f_{1}^{q}(x)
$$

Theoretical Framework: OPE and geometric twist

short distance behavior $\xi^{2} \rightarrow 0$
quark/gluon large distance structure

$$
\frac{i}{Q^{2}} \sum_{n}\left(\frac{-2 i}{Q^{2}}\right)^{n} q^{\mu_{1} \ldots \ldots} \cdot q^{\mu_{n}}\langle P| \bar{\psi}(0) \gamma_{\gamma_{1}} D_{\mu_{1} \ldots \ldots} . D_{\mu_{n}} \psi(0)|P\rangle
$$

$$
\xrightarrow{\int_{0}^{1}} \int_{0}^{1} d x x^{j} F_{2}\left(x, Q^{2}\right)
$$

Mellin Moments

The matrix element of a bi-local operator contains operators of different twist

Example

$$
\int \frac{d \lambda}{2 \pi} e^{i \lambda x}\langle P S| \bar{\psi}(0) \gamma_{\mu} \psi(\lambda n)|P S\rangle=2\left\{f_{1}(x) p_{\mu}+f_{4}(x) n_{\mu}\right\} .
$$

Each one of the PDFs corresponds to its own tower of operators/ OPE expansion

In a nutshell:

1. OPE in QCD allows us to order the matrix element by dominant LC singularities while separating out the long and short distance components
2. At a given value of the hard scale, Q, the quark-quark operators of twist two are the leading terms
3. Higher twist structure functions associated with operators of higher dimension involve covariant derivatives i.e. gluon... and they are suppressed by powers of 1/Q
4. Lorentz invariant concept, defined through space-time properties/geometry, independently from quark and gluon dynamics

2. DVCS AND OPE

$\mathrm{Q}^{2} \gg \mathrm{M}^{2} \rightarrow$ "deep"
$\mathrm{W}^{2} \gg \mathrm{M}^{2} \rightarrow$ equivalent to inelastic but not directly accessible

$$
\left\{\begin{array}{l}
P=\frac{p+p^{\prime}}{2} \\
\Delta=p^{\prime}-p=q-q^{\prime}
\end{array}\right.
$$

OPE (X. Ji, 1998)

$$
n_{\mu_{1}} \ldots n_{\mu_{n}}\left\langle P^{\prime}\right| O_{q}^{\mu_{1} \ldots \mu_{n}}|P\rangle=\bar{U}\left(P^{\prime}\right) \nVdash U(P) H_{q n}(\xi, t)+\bar{U}\left(P^{\prime}\right) \frac{\sigma^{\mu \alpha} n_{\mu} i \Delta_{\alpha}}{2 M} U(P) E_{q n}(\xi, t)
$$

helicity conserving
helicity flip

$$
\begin{aligned}
& H_{q n}(\xi, t)=\sum_{i=0}^{\left[\frac{n-1}{2}\right]} A_{q n, 2 i}(t)(-2 \xi)^{2 i}+\operatorname{Mod}(n+1,2) C_{q n}(t)(-2 \xi)^{n} \\
& E_{q n}(\xi, t)=\sum_{i=0}^{\left[\frac{n-1}{2}\right]} B_{q n, 2 i}(t)(-2 \xi)^{2 i}-\operatorname{Mod}(n+1,2) C_{q n}(t)(-2 \xi)^{n} .
\end{aligned}
$$

Mellin Moments

$$
\begin{aligned}
& \int_{-1}^{1} d x x^{n-2} H_{q}(x, \xi, t)=H_{q n} \\
& \int_{-1}^{1} d x x^{n-2} E_{q}(x, \xi, t)=E_{q n}
\end{aligned}
$$

Ph. Haegler, JoP: 295 (2011) 012009

Gluons: see Phiala Shanahan's talk

3. ENERGY MOMENTUM TENSOR

Scalar Field

Lagrangian density

$$
\mathcal{L}(x)=\frac{1}{2}\left(\frac{\partial \phi}{\partial x^{\mu}} \frac{\partial \phi}{\partial x_{\mu}}-\lambda^{2} \phi^{2}\right)=\frac{1}{2}\left(\partial_{\mu} \phi \partial^{\mu} \phi-\lambda^{2} \phi^{2}\right)
$$

Energy, momentum and angular momentum conservation follow from the invariance of \mathcal{L} under translations and rotations

$$
\begin{gathered}
\frac{\partial}{\partial x^{\mu}}\left[\frac{\partial \mathcal{L}}{\partial_{\mu}\left(\partial_{\alpha} \phi\right)} \frac{\partial \phi}{\partial x_{\nu}}-\mathcal{L} g^{\mu \nu}\right]=0 \quad \begin{array}{l}
\text { define } \\
\\
T^{\mu \nu}
\end{array} . \begin{array}{l}
\text { translation inv. continuity equation }
\end{array}
\end{gathered}
$$

$$
\frac{\partial}{\partial x^{\mu}}\left[x^{\nu} T^{\mu \rho}-x^{\rho} T_{\mu \nu}\right]=0 \quad \text { rotation inv. continuity equation }
$$

Four conserved quantities from translation invariance

$$
P^{\mu}=\int d^{3} \mathbf{x} T^{o \mu}
$$

Six conserved quantities from rotational invariance

$$
M^{\mu \nu}=\int d^{3} \mathbf{x} M^{o \mu \nu}=\int d^{3} \mathbf{x}\left[x^{\mu} T^{o \nu}-x^{\nu} T^{o \mu}\right]
$$

QED/QCD Energy Momentum Tensor $\dagger^{\mu v}$

Energy density

Several (still) open issues in QCD...

$$
\mathcal{L}_{Q C D}=\bar{\psi}\left(i \gamma_{\mu} D^{\mu}-m\right) \psi-\frac{1}{4} F_{a, \mu \nu} F_{a}^{\mu \nu}
$$

Conditions of gauge invariance and conservation: symmetric, traceless

The canonical QCD EMT is not symmetric and traceless: Belinfante and Coleman, Jackiw "fix" using superpotentials (terms with divergences)

The energy momentum tensor matrix element in spherically symmetric systems

$$
\begin{aligned}
& \mathrm{S}=0 \\
& \left(p^{\prime}\left|T^{\mu \nu}\right| p\right\rangle=2
\end{aligned}
$$

$$
S=1 / 2
$$

$$
\left\langle p^{\prime}, \Lambda\right| T^{\mu \nu}|p, \Lambda\rangle=A
$$

Energy Momentum Tensor in a spin 1 system

(Taneja, Kathuria, SL, Goldstein, PRD86(2012)

$$
\begin{aligned}
& \left\langle p^{\prime}\right| T^{\mu \nu}|p\rangle=-\frac{1}{2} P^{\mu} P^{\nu}\left(\epsilon^{\prime *} \epsilon\right) \mathcal{G}_{1}(t) \\
& -\frac{1}{4} P^{\mu} P^{\nu} \frac{(\epsilon P)\left(\epsilon^{\prime *} P\right)}{M^{2}} \mathcal{G}_{2}(t)-\frac{1}{2}\left[\Delta^{\mu} \wedge^{\nu} \text { dronic }^{\text {systems }}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { Angular mom. Kural Kathuria } \left., f, \Gamma^{2}+\mu \leftrightarrow \nu\right] \mathcal{G}_{5}(t)
\end{aligned}
$$

$$
\begin{align*}
& +2 g_{\mu \nu}(\epsilon P)\left(\epsilon^{\prime *} P\right)-\left(\epsilon^{\prime * \mu} \epsilon^{\nu}+\epsilon^{\prime * \nu} \epsilon^{\mu}\right) \Delta^{2} \mathcal{G}_{6}(t) \\
& +\frac{1}{2}\left[\epsilon^{* \prime \mu} \epsilon^{\nu}+\epsilon^{\prime * \nu} \epsilon^{\mu}\right] \mathcal{G}_{7}(t)+g^{\mu \nu}\left(\epsilon^{\prime *} \epsilon\right) M^{2} \mathcal{G}_{8}(t) \tag{5}
\end{align*}
$$

General rule to count form factors: t-channel JPC q. numbers Match $\langle P \bar{P}|$ to RHS $\longrightarrow\langle P \bar{P}| \bar{\psi}(0) \Gamma i D^{\left\{\mu_{1}\right.} i D^{\mu_{2}} \ldots i D^{\left.\mu_{n}\right\}} \psi(0)|0\rangle$

Haegler, PLB(2004)
Z.Chen\&Ji, PRD(2005)

Nucleon

TABLE I: $J^{P C}$ of the $N \bar{N}$ states.
Both S and L states considered

Deuteron

TABLE II: $J^{P C}$ of the $d \bar{d}$ states.

$>$ Spin and 3D structure of Deuteron

Angular Momentum Sum Rule in deuteron

$$
\frac{1}{2} \int_{-1}^{1} d x x H_{2}^{q}(x, 0,0)=J_{q}
$$

Taneja et al., Phys. Rev. D 86, 036008 (2012)

Angular Momentum Sum Rule in proton (Ji)
$\frac{1}{2} \int_{-1}^{1} d x x\left[H_{q}(x, 0,0)+E_{q}(x, 0,0)\right]=J_{q}$

In terms of gravitomagnetic form factors

Proton

Momentum

$$
\mathrm{A}^{q}+\mathrm{A}^{g}=1
$$

OAM

$\frac{1}{2}\left(\mathrm{~A}^{q, g}+B^{q, g}\right)=J_{z}^{q, g}$

Deuteron

Momentum

$$
\begin{aligned}
& \left\langle p^{\prime}\right| \int d^{3} x T_{q, g}^{0 i}|p\rangle=p^{i}\left\langle p^{\prime} \mid p\right\rangle=\mathcal{G}_{1}^{q, g} p^{i} \int d^{3} x 2 p^{0} \\
& \Rightarrow \mathcal{G}_{1}^{q}+\mathcal{G}_{1}^{q}=1
\end{aligned}
$$

OAM

$$
\begin{aligned}
& \left\langle p^{\prime}\right| \int d^{3} x\left(x_{1} T_{q, g}^{02}-x_{2} T_{q, g}^{01}\right)|p\rangle=\mathcal{G}_{5}^{q, g} \int d^{3} x p^{0} \\
& \Rightarrow \frac{1}{2} \mathcal{G}_{5}^{q, g}=J_{z}^{q, g}
\end{aligned}
$$

Physical Interpretation

Inclusive Observables

$$
\begin{aligned}
& H_{1}(x, 0,0)=\frac{1}{3}\left(q^{1}(x)+q^{-1}(x)+q^{0}(x)\right)=f_{1}(x) \\
& H_{5}(x, 0,0)=\left(q^{0}(x)-\frac{q^{1}(x)+q^{-1}(x)}{2}\right)=b_{1}(x)
\end{aligned}
$$

Form factors

$$
\begin{aligned}
& \int H_{1}(x, \xi, t) d x=G_{1}(t) \\
& \int H_{2}(x, \xi, t) d x=G_{2}(t) \\
& \int H_{3}(x, \xi, t) d x=G_{3}(t) \\
& \int H_{4}(x, \xi, t) d x=0 \\
& \int H_{5}(x, \xi, t) d x=0
\end{aligned}
$$

$2^{\text {nd }}$ moments

Nucleon

$$
\begin{aligned}
& \int d x x H(x, \xi, t)=A(t)+\xi^{2} C(t) \\
& \int d x x E(x, \xi, t)=B(t)-\xi^{2} C(t)
\end{aligned}
$$

Deuteron

$$
\begin{aligned}
& \int d x x\left[H_{1}(x, \xi, t)-\frac{1}{3} H_{5}(x, \xi, t)\right]=\mathcal{G}_{1}(t)+\xi^{2} \mathcal{G}_{3}(t)(7) \\
& \text { Charge/Momentum } \\
& \int d x x H_{2}(x, \xi, t)=\mathcal{G}_{5}(t) \\
& \int d x x H_{3}(x, \xi, t)=\mathcal{G}_{2}(t)+\xi^{2} \mathcal{G}_{4}(t) \\
& \text { (8) Angular Momentum } \\
& \int d x x H_{4}(x, \xi, t)=\xi \mathcal{G}_{6}(t) \\
& \int d x x H_{5}(x, \xi, t)=\mathcal{G}_{7}(t) \\
& \text { (9) Quadrupole } \\
& \text { Two independent D-terms! }
\end{aligned}
$$

Interpretation of D-term(s) in terms of shear forces: work in progress with Adam Freese, Ian Cloet and Whitney Armstrong

IS OAM OF TWIST TWO OR THREE AND WHY?

dynamical twist \neq geometric twist

> The diagrammatic approach is based on light front quantization.
> Power suppressed terms appear through a different construct than OPE!
> Quark fields are decomposed into "good" and "bad" components:

The good components are the independent fields in the Equations of Motion

The bad components are functions of the good components and transv.gluon field

$$
\chi=\mathcal{F}\left[\phi, A_{\perp}\right]
$$

... and as it goes... the bad components are always more interesting than the good ones....

Origin of Wandzura Wilczek relations

> The difference between the Lorentz invariant structure of OPE and light front quantization produces a mismatch in the geometric and dynamic twist terms of higher twist
> The Wandzura-Wilczek (WW) relations are a rendition of this mismatch.
In polarized electron scattering

$$
g_{2}(x)=-g_{1}(x)+\int_{x}^{1} \frac{d y}{y} g_{1}(x)+\bar{g}_{2}(x)
$$

dynamical tw 3 (measured)
geometric tw 3
twist 2

... and why are they important

$$
g_{2}(x)=-g_{1}(x)+\int_{x}^{1} \frac{d y}{y} g_{1}(x)+\bar{g}_{2}(x)
$$

dynamical tw 3 (measured)
geometric tw 3
twist 2

1. A fundamental construct to cleanly extract the quark-gluonquark interaction aka genuine twist three term
2. A window on the transverse structure of hadrons

The Wandzura Wilczek relations are derived in two steps

1. Lorentz Invariance Relations and gauge link structure

$$
\underbrace{\int d^{2} k_{T} \frac{k_{T}^{2}}{M^{2}} g_{1 T}\left(x, k_{T}^{2}\right)=\left(-\int_{x}^{1} g_{2}(y) d y+\widehat{g}_{T}\right.}
$$

2. QCD Equations of Motion

$$
g_{2}(x)=-g_{1}(x)+\int_{x}^{1} \frac{d y}{y} g_{1}(x)+\bar{g}_{2}(x)
$$

Partonic OAM: Wigner Distributions

$$
L_{q}^{\mathcal{U}}=\int d x \int d^{2} \mathbf{k}_{T} \int d^{2} \mathbf{b}\left(\mathbf{b} \times \mathbf{k}_{T}\right)_{z} \mathcal{W}^{\mathcal{U}}\left(x, \mathbf{k}_{T}, \mathbf{b}\right)
$$

Hatta
Lorce, Pasquini, Xiong, Yuan Mukherjee

Wigner Distribution and qq correlation function

$>\Delta_{\top}$ Fourier conjugate: $\mathbf{b}=$ transverse position of the quark inside the proton
$>{\underline{k_{T}} \text { Fourier conjugate: } \mathbf{z}_{\mathrm{T}}=\text { transverse distance traveled by the struck quark }}^{\text {F }}$ between the initial and final scattering

Possible Observable for L_{q}

Is there any observable that we can identify OAM with?

A New Relation

A. Rajan, A. Courtoy, M. Engelhardt, S.L., PRD (2016), arXiv:1601.06117
A. Rajan, M. Engelhardt, S.L., submitted to PRD arXiv:1709.05770
$\frac{1}{M} \int d^{2} k_{T} k_{T}^{2} F_{14}\left(x, 0, k_{T}^{2}, 0,0\right)=-\int_{x}^{1} d y\left[\widetilde{E}_{2 T}+H+E\right]$

Through Generalized Lorentz Invariance Relation (LIR) F_{14} is connected to twist 3 GPDs
*Different notation! $\quad G_{2} \rightarrow \tilde{E}_{2 T}+H+E$
Polyakov et al. Meissner, Metz and Schlegel, JHEP(2009)

Generalized LIR

$\frac{1}{M} \int d^{2} k_{T} k_{T}^{2} F_{14}\left(x, 0, k_{T}^{2}, 0,0\right)=-\int_{x}^{1} d y\left[\widetilde{E}_{2 T}+H+E\right]$

Generalized LIR for a staple link

$$
\frac{d}{d x} \int d^{2} k_{T} \frac{k_{T}^{2}}{M^{2}} F_{14}=\tilde{E}_{2 T}+H+E+\mathcal{A}
$$

LIR violating term

$$
\mathcal{A}_{F_{14}}=v^{-} \frac{\left(2 P^{+}\right)^{2}}{M^{2}} \int d^{2} k_{T} \int d k^{-}\left[\frac{k_{T} \cdot \Delta_{T}}{\Delta_{T}^{2}}\left(A_{11}^{F}+x A_{12}^{F}\right)+A_{14}^{F}+\frac{k_{T}^{2} \Delta_{T}^{2}-\left(k_{T} \cdot \Delta_{T}\right)^{2}}{\Delta_{T}^{2}}\left(\frac{\partial A_{8}^{F}}{\partial(k \cdot v)}+x \frac{\partial A_{9}^{F}}{\partial(k \cdot v)}\right)\right]
$$

Using the QCD EoM allows us to eliminate F_{14}

$$
\tilde{E}_{2 T}=-\int_{x}^{1} \frac{d y}{y}(H+E)+\left[\frac{\tilde{H}}{x}-\int_{x}^{1} \frac{d y}{y^{2}} \tilde{H}\right]+\left[\begin{array}{l}
{\left[\frac{1}{x} \mathcal{M}_{F_{14}}-\int_{x}^{1} \frac{d y}{y^{2}} \mathcal{M}_{F_{14}}\right]} \\
\text { genuine twist three term }
\end{array}\right.
$$

*Staple link

$$
\tilde{E}_{2 T}=-\int_{x}^{1} \frac{d y}{y}(H+E)+\left[\frac{\tilde{H}}{x}-\int_{x}^{1} \frac{d y}{y^{2}} \tilde{H}\right]+\left[\frac{1}{x} \mathcal{M}_{F_{14}}-\int_{x}^{1} \frac{d y}{y^{2}} \mathcal{M}_{F_{14}}\right]
$$

Integrating over x we re-obtain the OPE based relation

$$
\int_{0}^{1} d x x G_{2}=-\frac{1}{2} \int_{0}^{1} d x x(H+E)+\frac{1}{2} \int_{0}^{1} d x \tilde{H}
$$

A generalized Wandzura Wilczek relation obtained using OPE for twist 2 and twist 3 operators for the off-forward matrix elements

Twist 3 GPDs are sensitive to the combination of genuine tw $3+$ LIR violating terms

$$
\tilde{E}_{2 T}=-\int_{x}^{1} \frac{d y}{y}(H+E)+\left[\frac{\tilde{H}}{x}-\int_{x}^{1} \frac{d y}{y^{2}} \tilde{H}\right]+\left[\frac{1}{x} \mathcal{M}_{F_{14}}-\int_{x}^{1} \frac{d y}{y^{2}} \mathcal{M}_{F_{14}}\right]
$$

$$
\int_{x}^{1} \frac{d y}{y} \mathcal{A}_{F_{14}}
$$

$$
\tilde{E}_{2 T}=\tilde{E}_{2 T}^{W W}+\tilde{E}_{2 T}^{(3)}+\tilde{E}_{2 T}^{L I R}
$$

$$
\tilde{E}_{2 T}^{W W}=-\int_{x}^{1} \frac{d y}{y}(H+E)-\left[\frac{\tilde{H}}{x}-\int_{x}^{1} \frac{d y}{y^{2}} \tilde{H}\right]
$$

$$
-\left[\frac{1}{x} \mathcal{M}_{F_{14}}-\int_{x}^{1} \frac{d y}{y^{2}} \mathcal{M}_{F_{14}}\right]-\int_{x}^{1} \frac{d y}{y} \mathcal{A}_{F_{14}}
$$

Jaffe Manohar vs. Ji OAM

Difference between JM and Ji independently worked out by Y. Hatta, M. Burkardt 2012

$$
\mathcal{M}_{\Lambda \Lambda^{\prime}}^{i}=\frac{1}{4} \int \frac{d z^{-} d^{2} z_{T}}{(2 \pi)^{3}} e^{i x P^{+} z^{-}-i k_{T} \cdot z_{T}}
$$

$$
\left\langle p^{\prime}, \Lambda^{\prime}\right| \bar{\psi}(-z / 2)\left[\left.(\vec{\partial}-i g A) \mathcal{U} \Gamma\right|_{-z / 2}+\left.\Gamma \mathcal{U}(\overleftarrow{\mathscr{d}}+i g A)\right|_{z / 2}\right] \psi \psi(z / 2)|p, \Lambda\rangle_{z^{+}=0}
$$

In our approach

$$
\begin{aligned}
& -x \tilde{E}_{2 T}=\tilde{H}-\int d^{2} k_{T} \frac{k_{T}^{2}}{M^{2}} F_{14}^{\text {staple }}+\mathcal{M}_{F_{14}}^{\text {staple }} \\
& -x \tilde{E}_{2 T}=\tilde{H}-\int d^{2} k_{T} \frac{k_{T}^{2}}{M^{2}} F_{14}^{\text {straight }}+\mathcal{M}_{F_{14}}^{\text {straight }} \text { J. } \mathrm{Ji} \text { OAM }
\end{aligned}
$$

LIR violating term is the difference between JM and Ji

$$
L^{J M}(x)-L^{J i}(x)=\mathscr{M}_{F_{14}}-\left.\mathscr{M}_{F_{14}}\right|_{\nu=0}=-\int_{x}^{1} d y \mathscr{A}_{F_{14}}(y)
$$

Generalized Qiu Sterman term

$$
\int d^{2} k_{T} \frac{k_{T}^{2}}{M^{2}} F_{14}^{J M}-\int d^{2} k_{T} \frac{k_{T}^{2}}{M^{2}} F_{14}^{J i}=T_{F}(x, x, \Delta)
$$

$$
-\left.\left.\int d x F_{14}^{(1)}\right|_{\mathrm{diff}}\right|_{\Delta_{T}=0}=-\left.\frac{\partial}{\partial \Delta_{i}} i \epsilon^{i j} g v^{-} \frac{1}{2 P^{+}} \int_{0}^{1} d s\left\langle p^{\prime},+\right| \bar{\psi}(0) \gamma^{+} U(0, s v) F^{+j}(s v) U(s v, 0) \psi(0)|p,+\rangle\right|_{\Delta_{T}=0}
$$

Clarifying a few open issues in the literature

- The genuine twist 3 term for a staple link contains an extra term that gives JM OAM
- The genuine twist 3 term for a straight link does not have this term
- An experimental measurement of twist 3 GPDs is sensitive to OAM but it cannot disentangle the difference between JM and Ji decompositions
- Similarly, the LIR term does not impact the extraction of the genuine twist 3 contribution to polarized DIS $\left(g_{2}\right)$.
$L_{q}(x, 0,0)=x \int_{x}^{1} \frac{d y}{y}\left(H_{q}(y, 0,0)+E_{q}(y, 0,0)\right)-x \int_{x}^{1} \frac{d y}{y^{2}} \tilde{H}_{q}(y, 0,0)$

Abha Rajan et al., arXiv:1601.06117

INTERPETATION OF XMOMENTS

W. Armstrong, M. Engelhardt, SL, A. Rajan

x-Moments

M_{1}

$\int d x \tilde{E}_{2 T}=-\int d x(H+E) \quad \Rightarrow \int d x\left(\tilde{E}_{2 T}+H+E\right)=0$
OAM Sum Rule

$$
\int d x x \tilde{E}_{2 T}=-\frac{1}{2} \int d x x(H+E)-\frac{1}{2} \int d x \tilde{H}
$$

$$
\int d x x^{2} \tilde{E}_{2 T}=-\frac{1}{3} \int d x x^{2}(H+E)-\frac{2}{3} \int d x x \tilde{H}-\frac{2}{3} \int d x x \mathcal{M}_{F_{14}}
$$

Genuine twist three d_{2}

Lattice calculation

Interpretation

Force acting on quark

$$
\begin{aligned}
& \int d x \int d^{2} k_{T} \mathcal{M}_{\Lambda^{\prime} \Lambda}^{i, S}=i \epsilon^{i j} g v^{-} \frac{1}{2 P^{+}} \int_{0}^{1} d s\left\langle p^{\prime}, \Lambda^{\prime}\right| \bar{\psi}(0) \gamma^{+} U(0, s v) F^{+j}(s v) U(s v, 0) \psi(0)|p, \Lambda\rangle \\
& \int d x \int d^{2} k_{T} \mathcal{M}_{\Lambda^{\prime} \Lambda}^{i, A}=-g v^{-} \frac{1}{2 P^{+}} \int_{0}^{1} d s\left\langle p^{\prime}, \Lambda^{\prime}\right| \bar{\psi}(0) \gamma^{+} \gamma^{5} U(0, s v) F^{+i}(s v) U(s v, 0) \psi(0)|p, \Lambda\rangle
\end{aligned}
$$

Non zero only for staple link

$$
\begin{aligned}
& \mathrm{M}_{3}\left(\mathrm{~V}^{-}=0\right) \\
& \quad \int d x x \int d^{2} k_{T} \mathcal{M}_{\Lambda^{\prime} \Lambda}^{i, S}=\frac{i g}{4\left(P^{+}\right)^{2}}\left\langle p^{\prime}, \Lambda^{\prime}\right| \bar{\psi}(0) \gamma^{+} \gamma^{5} F^{+i}(0) \psi(0)|p, \Lambda\rangle \\
& \quad \int d x x \int d^{2} k_{T} \mathcal{M}_{\Lambda^{\prime} \Lambda}^{i, A}=\frac{g}{4\left(P^{+}\right)^{2}} \epsilon^{i j}\left\langle p^{\prime}, \Lambda^{\prime}\right| \bar{\psi}(0) \gamma^{+} F^{+j}(0) \psi(0)|p, \Lambda\rangle
\end{aligned}
$$

Relations between derivatives

$$
\begin{gathered}
\left.\frac{d}{d v^{-}} \mathcal{M}_{\Lambda \Lambda^{\prime}}^{i, S(n=2)}\right|_{v^{-}=0}=i\left(2 P^{+}\right) \mathcal{M}_{\Lambda \Lambda^{\prime}}^{i, A(n=3)} \\
\left.\frac{d}{d v^{-}} \mathcal{M}_{\Lambda \Lambda^{\prime}}^{i, A(n=2)}\right|_{v^{-}=0}=-i\left(2 P^{+}\right) \mathcal{M}_{\Lambda}^{i, S(n=3)}
\end{gathered}
$$

Proton transverse spin configuration
Genuine twist three d_{2}

$$
\begin{aligned}
\left.\frac{d}{d v} \iint d x F_{12}^{(1)}\right|_{v^{-}=0} & =\left.\frac{d}{d v^{-}} \int d x \mathcal{M}_{F_{12}}\right|_{v^{-}=0}=i\left(2 P^{+}\right) \int d x x \frac{\Delta_{i}}{\Delta_{T}^{2}}\left(\mathcal{M}_{++}^{i, A}-\mathcal{M}_{--}^{i, A}\right)=\mathcal{M}_{G_{12}}^{n=3} \\
\left.\frac{d}{d v^{-}} \int d x G_{12}^{(1)}\right|_{v^{-}=0} & =\left.\frac{d}{d v^{-}} \int d x \mathcal{M}_{G_{12}}\right|_{v^{-}=0}=i\left(2 P^{+}\right) \int d x x \frac{\Delta_{i}}{\Delta_{T}^{2}}\left(\mathcal{M}_{++}^{i, S}+\mathcal{M}_{--}^{i, S}\right)=\mathcal{M}_{F_{12}}^{n=3}
\end{aligned}
$$

Slope of Sivers function in staple length
quantitative results being worked on now...

Other integrated relations: SPIN ORBIT!

$$
\begin{gathered}
\int d x x\left(E_{2 T}^{\prime}+2 \tilde{H}_{2 T}^{\prime}\right)=-\frac{1}{2} \int d x x \tilde{H}-\frac{1}{2} \int d x H+\frac{m}{2 M} \int d x\left(E_{T}+2 \tilde{H}_{T}\right) \\
\left(L_{z} S_{z}\right)_{q}=\int d x x\left(E_{2 T}^{\prime}+2 \tilde{H}_{2 T}^{\prime}+\tilde{H}\right), \quad \kappa_{T}=\int d x\left(E_{T}+2 \tilde{H}_{T}\right), \quad e_{q}=\int d x H
\end{gathered}
$$

$$
\frac{1}{2} \int d x x \tilde{H}=\left(L_{z} S_{z}\right)_{q}+\frac{1}{2} e_{q}-\frac{m_{q}}{2 M} \kappa_{T}^{q}
$$

> Integral relation without connecting to spin-orbit Polyakov et al. (2000)

Quark sector: $J_{q}=L_{q}+\frac{1}{2} \Delta \Sigma_{q}$

EIC \rightarrow Adding gluons: Jaffe Manohar Sum Rule $\frac{1}{2} \Delta \Sigma_{q}+L_{q}+\Delta G+L_{g}=\frac{1}{2}$

Conclusions and Outlook

The connection established through the new relations between (G)TMDs and Twist 3 GPDs, not only allows us to evaluate the angular momentum sum rule, it also opens many interesting avenues:

- It allows us to study in detail the role of quark-gluon correlations, in a framework where the role of k_{T} and off-shellness, k^{2}, is manifest.
- OAM was obtained so far by subtraction (also in lattice). We can now both calculate OAM on the lattice (GTMD) and validate this through measurements (twist 3 GPD)
- It provides an ideal setting to test renormalization issues, evolution etc...
- QCD studies at the amplitude level shed light on chiral symmetry breaking
- TWIST THREE OBJECTS ARE CRUCIAL TO STUDY QCD AT THE AMPLITUDE LEVEL

