Generalized parton distributions of (He) nuclei

Sergio Scopetta

Dipartimento di Fisica e Geologia, Università di Perugia and INFN, Sezione di Perugia, Italy

in collaboration with

Sara Fucini Università di Perugia and INFN, Perugia, Italy

Matteo Rinaldi – IFIC and Universidad de Valencia, Spain

Michele Viviani – INFN, Pisa, Italy

Outline

The nucleus: "a Lab for QCD fundamental studies"

Realistic calculations: use of few-body wave functions, exact solutions of the Schrödinger equation, with realistic NN potentials (Av18, Nijmegen, CD Bonn) and 3-body forces

GPDs of light nuclei (deuteron aside):

1 - GPDs for ³He:

A complete impulse approximation realistic study is reviewed (S.S. PRC 2004, PRC 2009; M. Rinaldi and S.S., PRC 2012, PRC 2013) No data; proposals? Prospects al JLAB-12 and EIC;

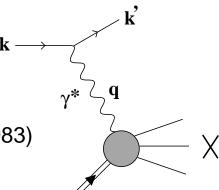
2 - DVCS off ⁴He:

data available from JLab at 6 GeV; new data expected at 12 GeV; our calculation (not yet realistic).

(S. Fucini, S.S., M. Viviani, in preparation)

My point: I do not know if realistic calculations will describe the data. I think they are necessary to distinguish effects due to "conventional" or to "exotic" nuclear structure

EMC effect in A-DIS



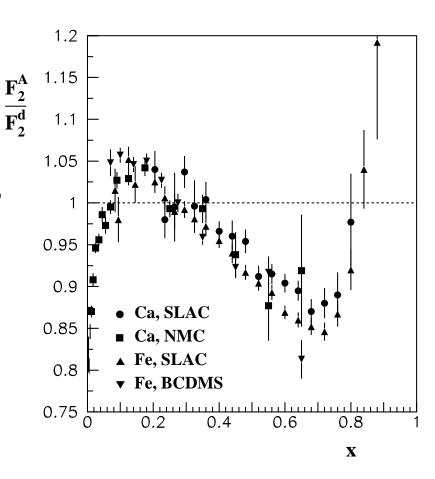
Measured in A(e, e')X, ratio of A to d SFs F_2 (EMC Coll., 1983)

One has
$$0 \le x = \frac{Q^2}{2M\nu} \le \frac{M_A}{M} \simeq A$$

•
$$0.2 \le x \le 0.8$$
 "EMC (binding) region"

●
$$0.8 \le x \le 1$$
 "Fermi motion region"

$$x \ge 1$$
 "TERRA INCOGNITA"



EMC effect: explanations?

In general, with a few parameters any model explains the data:

EMC effect = "Everyone's Model is Cool" (G. Miller)

Situation: basically not understood. Very unsatisfactory. We need to know the reaction mechanism of hard processes off nuclei and the degrees of freedom which are involved:

the knowledge of nuclear parton distributions is crucial for the data analysis of heavy ions collisions;

the partonic structure of the neutron is measured with nuclear targets and several QCD sum rules involve the neutron information (Bjorken SR, for example): importance of Nuclear Physics for QCD

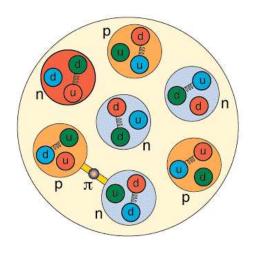
Inclusive measurements cannot distinguish between models

One has to go beyond (R. Dupré and S.S., EPJA 52 (2016) 159)

- SIDIS (TMDs) not treated here
- Hard Exclusive Processes (GPDs)

EMC effect: way out?

Question: Which of these transverse sections is more similar to that of a nucleus?



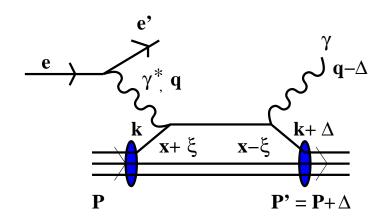
To answer, we should perform a tomography...

We can! M. Burkardt, PRD 62 (2000) 07153

Answer: Deeply Virtual Compton Scattering & Generalized Parton Distributions (GPDs)

GPDS: Definition (X. Ji PRL 78 (97) 610)

For a $J=\frac{1}{2}$ target, in a hard-exclusive process, (handbag approximation) such as (coherent) DVCS:



the GPDs $H_q(x, \xi, \Delta^2)$ and $E_q(x, \xi, \Delta^2)$ are introduced:

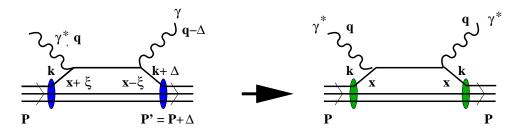
$$\int \frac{d\lambda}{2\pi} e^{i\lambda x} \langle P' | \bar{\psi}_q(-\lambda n/2) \quad \gamma^{\mu} \quad \psi_q(\lambda n/2) | P \rangle = H_q(x, \xi, \Delta^2) \bar{U}(P') \gamma^{\mu} U(P)$$

$$+ \quad E_q(x, \xi, \Delta^2) \bar{U}(P') \frac{i\sigma^{\mu\nu} \Delta_{\nu}}{2M} U(P) + \dots$$

- $oldsymbol{igstyle D} \Delta = P' P$, $q^\mu = (q_0, ec q)$, and $ar P = (P + P')^\mu/2$
- $x = \bar{k}^+/\bar{P}^+; \quad \xi = \text{"skewness"} = -\Delta^+/(2\bar{P}^+)$

GPDs: constraints

when P'=P, i.e., $\Delta^2=\xi=0$, one recovers the usual PDFs:



$$H_q(x,\xi,\Delta^2) \Longrightarrow H_q(x,0,0) = q(x); \quad E_q(x,0,0) \ unknown$$

 \blacksquare the x-integration yields the q-contribution to the Form Factors (ffs)

$$\int \! dx \, \int \frac{d\lambda}{2\pi} e^{i\lambda x} \langle P' | \bar{\psi}_q(-\lambda n/2) \gamma^\mu \psi_q(\lambda n/2) | P \rangle =$$

$$\int \! dx \, H_q(x, \xi, \Delta^2) \bar{U}(P') \gamma^\mu U(P) + \int \! dx \, E_q(x, \xi, \Delta^2) \bar{U}(P') \frac{\sigma^{\mu\nu} \Delta_\nu}{2M} U(P) + \dots$$

$$\Longrightarrow \int dx \, H_q(x,\xi,\Delta^2) = F_1^q(\Delta^2) \qquad \int dx \, E_q(x,\xi,\Delta^2) = F_2^q(\Delta^2)$$

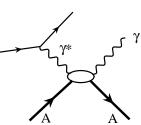
$$\implies$$
 Defining $\left[\begin{array}{c} \tilde{G}_M^q = H_q + E_q \end{array} \right]$ one has $\int dx \, \tilde{G}_M^q(x,\xi,\Delta^2) = G_M^q(\Delta^2)$

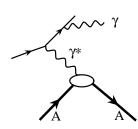
GPDs: a unique tool...

not only 3D structure, at parton level; many other aspects, e.g., contribution to the solution to the "Spin Crisis" (J.Ashman et al., EMC collaboration, PLB 206, 364 (1988)), yielding parton total angular momentum...

... but also an experimental challenge:

Particular Section Hard exclusive process \longrightarrow small σ ;





Difficult extraction:

DVCS

BH

$$T_{\mathbf{DVCS}} \propto CFF \propto \int_{-1}^{1} dx \, \frac{H_q(x, \xi, \Delta^2)}{x - \xi + i\epsilon} + \dots$$

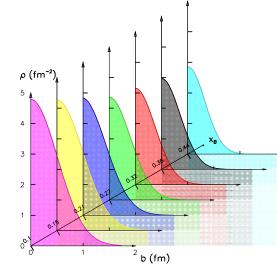
Description Competition with the **BH** process! (σ asymmetries measured).

$$d\sigma \propto |T_{\mathbf{DVCS}}|^2 + |T_{\mathbf{BH}}|^2 + 2\Re\{T_{\mathbf{DVCS}}T_{\mathbf{BH}}^*\}$$

Nevertheless, for the proton, we have results:

(Guidal et al., Rep. Prog. Phys. 2013...

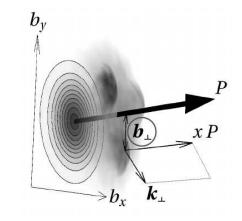
Dupré, Guidal, Niccolai, Vanderhaeghen Eur. Phys. J. A53 (2017) 171)

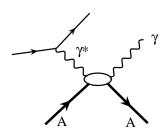


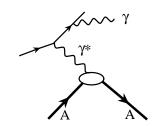
Nuclei and DVCS tomography

In impact parameter space, GPDs are *densities*:

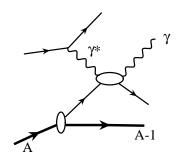
$$\rho_q(x, \vec{b}_{\perp}) = \int \frac{d\vec{\Delta}_{\perp}}{(2\pi)^2} e^{i\vec{b}_{\perp} \cdot \vec{\Delta}_{\perp}} H^q(x, 0, \Delta^2)$$

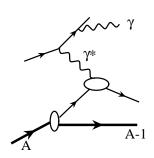






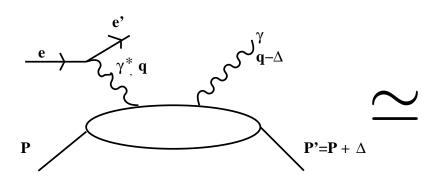
Coherent DVCS: nuclear tomography



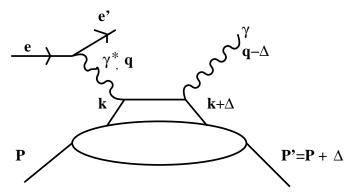


Incoherent DVCS: tomography of bound nucleons: realization of the EMC effect

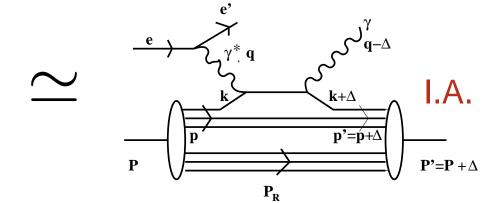
ONE of the reasons is understood by studying coherent DVCS in the I.A. to the handbag contribution:



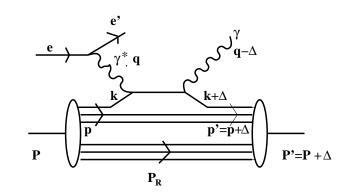
coherent DVCS



handbag



ONE of the reasons is understood by studying coherent DVCS in the I.A. to the handbag contribution:



In a symmetric frame ($\bar{p}=(p+p')/2$) :

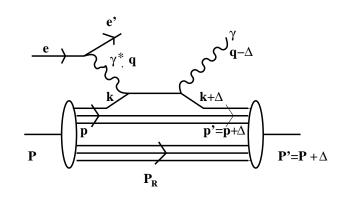
$$k^{+} = (x+\xi)\bar{P}^{+} = (x'+\xi')\bar{p}^{+},$$

$$(k+\Delta)^{+} = (x-\xi)\bar{P}^{+} = (x'-\xi')\bar{p}^{+},$$

one has, for a given GPD

$$GPD_q(x,\xi,\Delta^2) \simeq \int \frac{dz^-}{4\pi} e^{ix\bar{P}^+z^-} {}_A \langle P'S'|\hat{O}_q^{\mu}|PS\rangle_A|_{z^+=0,z_{\perp}=0}$$
.

ONE of the reasons is understood by studying coherent DVCS in the I.A. to the handbag contribution:



In a symmetric frame ($\bar{p}=(p+p')/2$) :

$$k^{+} = (x + \xi)\bar{P}^{+} = (x' + \xi')\bar{p}^{+},$$

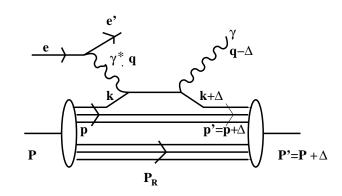
 $(k + \Delta)^{+} = (x - \xi)\bar{P}^{+} = (x' - \xi')\bar{p}^{+},$

one has, for a given GPD

$$GPD_q(x,\xi,\Delta^2) \simeq \int \frac{dz^-}{4\pi} e^{ix\bar{P}^+z^-} {}_A \langle P'S' | \hat{O}_q^{\mu} | PS \rangle_A |_{z^+=0,z_\perp=0}$$
.

By properly inserting complete sets of states for the interacting nucleon and the recoiling system :

ONE of the reasons is understood by studying coherent DVCS in the I.A. to the handbag contribution:



In a symmetric frame ($\bar{p} = (p + p')/2$) :

$$k^{+} = (x+\xi)\bar{P}^{+} = (x'+\xi')\bar{p}^{+},$$

$$(k+\Delta)^{+} = (x-\xi)\bar{P}^{+} = (x'-\xi')\bar{p}^{+},$$

one has, for a given GPD

$$GPD_{q}(x,\xi,\Delta^{2}) = \int \frac{dz^{-}}{4\pi} e^{ix'\bar{p}^{+}z^{-}} \langle P'S' | \sum_{\vec{P}'_{R},S'_{R},\vec{p}',s'} \{|P'_{R}S'_{R}\rangle|p's'\rangle\} \langle P'_{R}S'_{R}|$$

$$\langle p's' | \hat{O}^{\mu}_{q} \sum_{\vec{P}_{R},S_{R},\vec{p},s} \{|P_{R}S_{R}\rangle|ps\rangle\} \{\langle P_{R}S_{R}|\langle ps|\} | |PS\rangle ,$$

and, since $\{\langle P_R S_R | \langle ps | \} | PS \rangle = \langle P_R S_R, ps | PS \rangle (2\pi)^3 \delta^3 (\vec{P} - \vec{P}_R - \vec{p}) \delta_{S,S_R s}$,

Why nuclei?

a convolution formula can be obtained (S.S. PRC 70, 015205 (2004)):

$$H_q^A(x,\xi,\Delta^2) \simeq \sum_N \int \frac{d\bar{z}}{\bar{z}} h_N^A(\bar{z},\xi,\Delta^2) H_q^N\left(\frac{x}{\bar{z}},\frac{\xi}{\bar{z}},\Delta^2\right)$$

in terms of $H_q^N(x', \xi', \Delta^2)$, the GPD of the free nucleon N, and of the light-cone off-diagonal momentum distribution:

$$h_N^A(z,\xi,\Delta^2) = \int dE dec{p} P_N^A(ec{p},ec{p}+ec{\Delta},E) \delta\left(ar{z}-rac{ar{p}^+}{ar{P}^+}
ight)$$

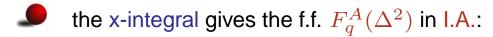
where $P_N^A(\vec{p}, \vec{p} + \vec{\Delta}, E)$, is the one-body off-diagonal spectral function for the nucleon N in the nucleus,

$$P_N^3(\vec{p}, \vec{p} + \vec{\Delta}, E) = \frac{1}{(2\pi)^3} \frac{1}{2} \sum_{M} \sum_{R,s} \langle \vec{P}' M | (\vec{P} - \vec{p}) S_R, (\vec{p} + \vec{\Delta}) s \rangle$$

$$\times \langle (\vec{P} - \vec{p}) S_R, \vec{p} s | \vec{P} M \rangle \delta(E - E_{min} - E_R^*).$$

Why nuclei?

The obtained expressions have the correct limits:



$$\int dx H_q^A(x,\xi,\Delta^2) = F_q^N(\Delta^2) \int dE d\vec{p} \, P_N^A(\vec{p},\vec{p}+\vec{\Delta},E) = F_q^A(\Delta^2)$$

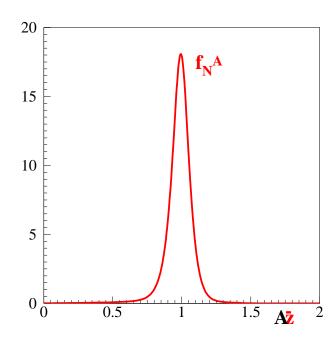
forward limit (standard DIS):

$$q^{A}(x) \simeq \sum_{N} \int_{x}^{1} \frac{d\tilde{z}}{\tilde{z}} f_{N}^{A}(\tilde{z}) q^{N} \left(\frac{x}{\tilde{z}}\right)$$

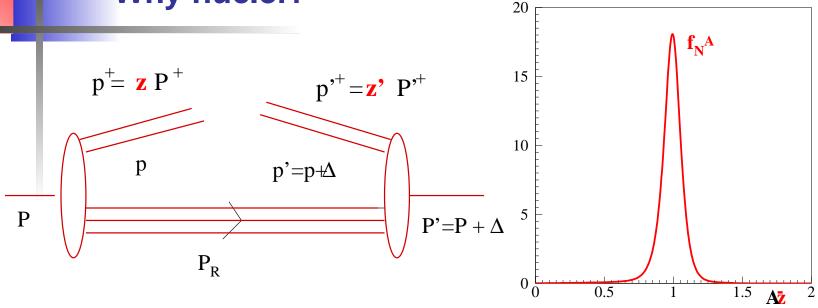
with the light-cone momentum distribution:

$$f_N^A(\tilde{z}) = \int \! dE d\vec{p} \, P_N^A(\vec{p}, E) \delta \left(\tilde{z} - \frac{p^+}{P^+} \right) \; ,$$

which is strongly peaked around $A\tilde{z}=1$:



Why nuclei?



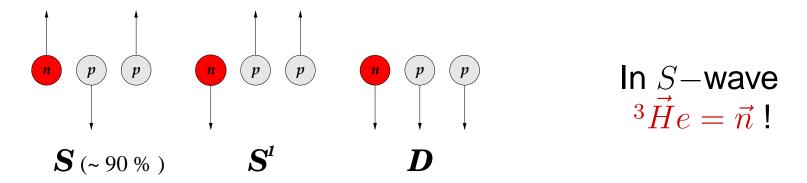
Since $z-z'=-x_B(1-z)/(1-x_B)$, $\xi\simeq x_B/(2-x_B)$ can be tuned to have z-z' larger than the width of the narrow nuclear light-cone momentum distribution $f_N^A(\bar z=(z+z')/2)$: in this case IA predicts a vanishing GPD, at $small\ x_B$.

If DVCS were observed at this kinematics, exotic effects beyond IA, non-nucleonic degrees of freedom, would be pointed out (Berger, Cano, Diehl and Pire, PRL 87 (2001) 142302)

Similar effect predicted in DIS at $x_B > 1$, where DIS data are not accurate enough.

GPDs for ³He: why?

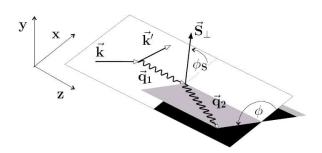
- 3He is theoretically well known. Even a relativistic treatment may be implemented.
- ³He has been used extensively as an effective neutron target, especially to unveil the spin content of the free neutron, due to its peculiar spin structure:



- ³He always promising when the neutron angular momentum properties have to be studied. To what extent for OAM?
- ³He is a unique target for GPDs studies. Examples:
 - * access to the neutron information in coherent processes
 - heavier targets do not allow refined theoretical treatments. Test of the theory
 - Between 2 H ("not a nucleus") and 4 He (a true one). Not isoscalar!

Extracting GPDs: $^3\text{He} \simeq p$

One measures asymmetries: $A = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}$



Polarized beam, unpolarized target:

$$\Delta \sigma_{LU} \simeq \sin \phi \left[F_1 \mathcal{H} + \xi (F_1 + F_2) \tilde{\mathcal{H}} + (\Delta^2 F_2 / M^2) \mathcal{E} / 4 \right] d\phi \implies H$$

Unpolarized beam, longitudinally polarized target:

$$\Delta \sigma_{UL} \simeq \sin \phi \left\{ F_1 \tilde{\mathcal{H}} + \xi (F_1 + F_2) \left[\mathcal{H} + \xi / (1 + \xi) \mathcal{E} \right] \right\} d\phi \implies \tilde{H}$$

Unpolarized beam, transversely polarized target:

$$\Delta \sigma_{UT} \simeq \cos \phi \sin(\phi_S - \phi) \left[\Delta^2 (F_2 \mathcal{H} - F_1 \mathcal{E}) / M^2 \right] d\phi \implies E$$

To evaluate cross sections, e.g. for experiments planning, one needs H, \tilde{H}, E This is what we have calculated for ³He . H alone, already very interesting.

GPDs of ³He in IA

 H_q^A can be obtained in terms of H_q^N (S.S. PRC 70, 015205 (2004), PRC 79, 025207 (2009)):

$$H_q^A(x,\xi,\Delta^2) = \sum_N \int dE \int d\vec{p} \sum_S \sum_s P_{SS,ss}^N(\vec{p},\vec{p'},E) \frac{\xi'}{\xi} H_q^N(x',\Delta^2,\xi') ,$$

and $\tilde{G}_M^{3,q}$ in terms of $\tilde{G}_M^{N,q}$ (M. Rinaldi, S.S. PRC 85, 062201(R) (2012); PRC 87, 035208 (2013)):

$$\tilde{G}_{M}^{3,q}(x,\Delta^{2},\xi) = \sum_{N} \int dE \int d\vec{p} \left[P_{+-,+-}^{N} - P_{+-,-+}^{N} \right] (\vec{p},\vec{p}',E) \frac{\xi'}{\xi} \tilde{G}_{M}^{N,q}(x',\Delta^{2},\xi') ,$$

where $P_{SS,ss}^{N}(\vec{p},\vec{p}',E)$ is the one-body, spin-dependent, off-diagonal spectral function for the nucleon N in the nucleus,

$$P_{SS',ss'}^{N}(\vec{p},\vec{p}',E) = \frac{1}{(2\pi)^6} \frac{M\sqrt{ME}}{2} \int d\Omega_t \sum_{s_t} \langle \vec{P}'S' | \vec{p}'s', \vec{t}s_t \rangle_N \langle \vec{p}s, \vec{t}s_t | \vec{P}S \rangle_N ,$$

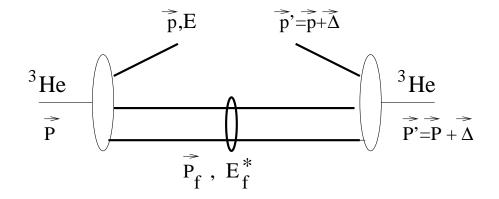
evaluated by means of a realistic treatment based on Av18 wave functions ("CHH" method in A. Kievsky et al NPA 577, 511 (1994); Av18 + UIX overlaps in E. Pace et. al, PRC 64, 055203 (2001)).

Nucleon GPDs in 3 He calculations given by an old version of the VGG model (VGG 1999, x- and Δ^2- dependencies factorized)

A few words about $P_N^3(\vec{p}, \vec{p} + \vec{\Delta}, E)$:

$$P_N^3(\vec{p}, \vec{p} + \vec{\Delta}, E) = \frac{1}{(2\pi)^3} \frac{1}{2} \sum_{M} \sum_{f,s} \langle \vec{P}' M | (\vec{P} - \vec{p}) S_f, (\vec{p} + \vec{\Delta}) s \rangle$$

$$\times \langle (\vec{P} - \vec{p}) S_f, \vec{p} s | \vec{P} M \rangle \delta(E - E_{min} - E_f^*).$$

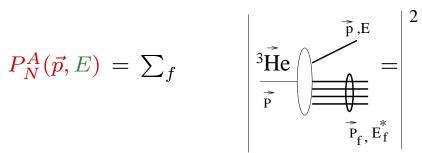


- the two-body recoiling system can be either the deuteron or a scattering state;
- when a deeply bound nucleon, with high removal energy $E=E_{min}+E_f^*$, leaves the nucleus, the recoling system is left with high excitation energy E_f^* ;
- the three-body bound state and the two-body bound or scattering state are evaluated within the same (Av18) interaction: the extension of the treatment to heavier nuclei is extremely difficult

Nucleon off-shellness in I.A.:

In the forward limit $f_N^A(\tilde{z}) = \int dE d\vec{p} \, P_N^A(\vec{p}, E) \delta\left(\tilde{z} - \frac{p^+}{P^+}\right)$,

$$P_N^A(\vec{p}, E) = \sum_f$$



📝 intrinsic overlaps 🔍

$$\sum_{f} \delta(E - E_{min} - E_{f}^{*}) \overbrace{S_{A} \langle \Psi_{A}; J_{A} \mathcal{M} \pi_{A} | \vec{p}, \sigma; \phi_{f}(E_{f}^{*}) \rangle} \langle \phi_{f}(E_{f}^{*}); \sigma \vec{p} | \pi_{A} J_{A} \mathcal{M}'; \Psi_{A} \rangle_{S_{A}}$$

$$\tilde{z} = \frac{p_0 - p_3}{M_A}$$
 $p_0 = M_A - \sqrt{M_{A-1}^{*2} + p^2} \simeq M - E - T_f \longrightarrow p^2 \neq M^2$

"Instant-Form" I.A.:

- off-shellness driven by nuclear dynamics (all NN correlations included in the realistic wf)
- number and momentum sum rules not fulfilled at the same time

The calculation has the correct limits:

1 - Forward limit: the ratio:

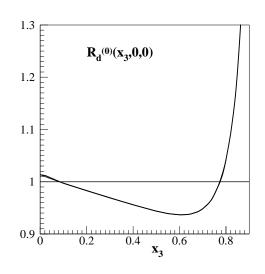
$$R_q(x,0,0) = \frac{H_q^3(x,0,0)}{2H_q^p(x,0,0) + H_q^n(x,0,0)}$$
$$= \frac{q^3(x)}{2q^p(x) + q^n(x)}$$

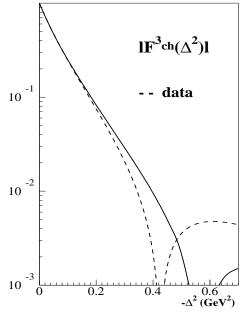
shows an EMC-like behavior;

2 - Charge F.F.:

$$\sum_{q} e_q \int dx H_q^3(x,\xi,\Delta^2) = F^3(\Delta^2)$$

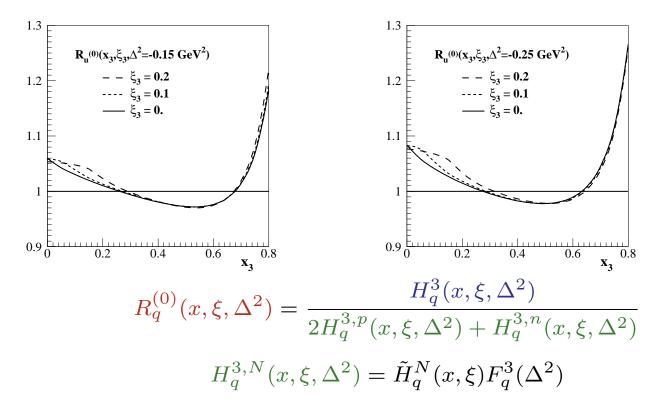
in good agreement with data in the region relevant to the coherent process, $-\Delta^2 \leq 0.2~{\rm GeV^2}.$





Nuclear effects - general features

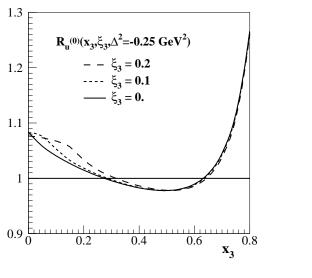
Nuclear effects grow with ξ at fixed Δ^2 , and with Δ^2 at fixed ξ :

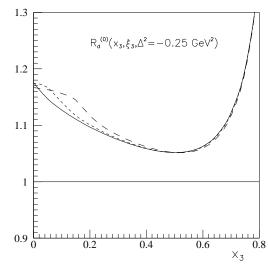


 $R_q^{(0)}(x,\xi,\Delta^2)$ would be one if there were no nuclear effects; as it is found also for the deuteron, there is no factorization into terms dependent separately on Δ^2 and x,ξ (the factorization hypotheses has been used to estimate nuclear GPDs), even if the nucleonic model is factorized

Nuclear effects - flavor dependence

Nuclear effects are bigger for the d flavor rather than for the u flavor:





$$R_q^{(0)}(x,\xi,\Delta^2) = \frac{H_q^3(x,\xi,\Delta^2)}{2H_q^{3,p}(x,\xi,\Delta^2) + H_q^{3,n}(x,\xi,\Delta^2)}$$

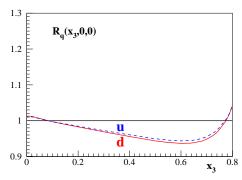
$$H_q^{3,N}(x,\xi,\Delta^2) = \tilde{H}_q^N(x,\xi)F_q^3(\Delta^2)$$

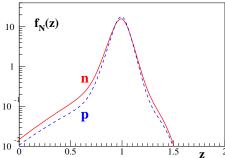
 $R_q^{(0)}(x,\xi,\Delta^2)$ would be one if there were no nuclear effects;

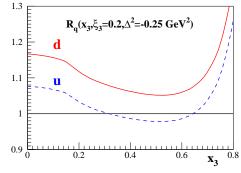
This is a typical conventional, IA effect (spectral functions are different for p and n in 3 He, not isoscalar!); if (not) found, clear indication on the reaction mechanism of DIS off nuclei. Not seen in 2 H, 4 He

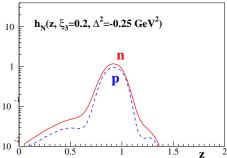
Nuclear effects - flavor dependence

The d and u distributions follow the pattern of the neutron and proton light-cone momentum distributions, respectively:









How to perform a flavor separation? Take the triton ³H!

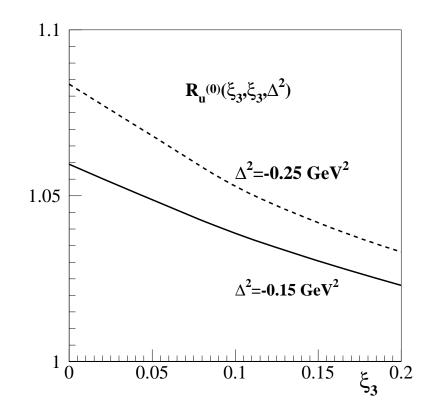
Possible (see MARATHON@JLab). Possible for DVCS (ALERT).

Studied in S.S. Phys. Rev. C 79 (2009) 025207

 $H_t, H_H \to H_u^H \simeq H_d^t, H_d^H \simeq H_u^t$ in the valence region...

Nuclear effects @ $x = \xi$

Nuclear effects are large also in the important region $x = \xi$:



Nuclear effects - the binding

General IA formula:

$$H_q^A(x,\xi,\Delta^2) \simeq \sum_N \int_x^1 \frac{dz}{z} h_N^A(z,\xi,\Delta^2) H_q^N\left(\frac{x}{z},\frac{\xi}{z},\Delta^2\right)$$

where

$$h_N^A(z,\xi,\Delta^2) = \int dE d\vec{p} \, P_N^A(\vec{p},\vec{p}+\vec{\Delta},E) \delta\left(z+\xi-rac{p^+}{ar{P}^+}
ight)$$

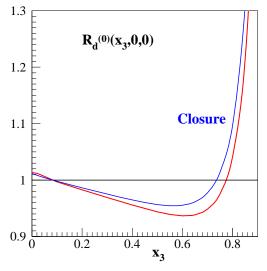
$$P_N^3(\vec{p}, \vec{p} + \vec{\Delta}, E) = \bar{\sum}_M \sum_{s,f} \langle \vec{P}' M | \vec{P}_f, (\vec{p} + \vec{\Delta}) s \rangle$$

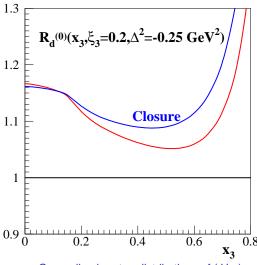
$$\times \langle \vec{P}_f, \vec{p}s | \vec{P}M \rangle \delta(E - E_{min} - E_f^*)$$

using the Closure Approximation, $E_f^* = \bar{E}$:

$$P_N^3(\vec{p}, \vec{p} + \vec{\Delta}, E) \simeq \sum_M \sum_s \langle \vec{P}' M | a_{\vec{p} + \vec{\Delta}, s}^{\dagger} a_{\vec{p}, s} | \vec{P} M \rangle$$
$$\delta(E - E_{min} - \bar{E}) =$$
$$= n(\vec{p}, \vec{p} + \vec{\Delta}) \, \delta(E - E_{min} - \bar{E}) ,$$

Spectral function substituted by a Momentum distribution (forward case in C. Ciofi, S. Liuti PRC 41 (1990) 1100)



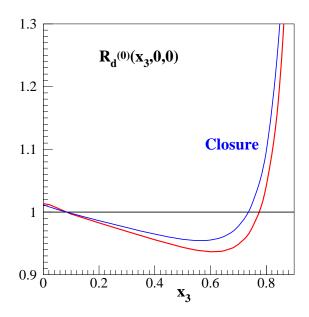


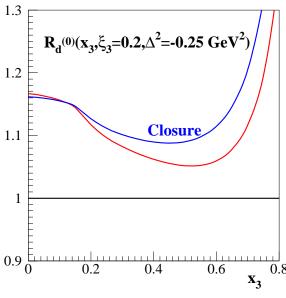
Generalized parton distributions of (He) nuclei - p.25/43

Nuclear effects - the binding

Nuclear effects are bigger than in the forward case: dependence on the binding

- In calculations using $n(\vec{p}, \vec{p} + \vec{\Delta})$ instead of $P_N^3(\vec{p}, \vec{p} + \vec{\Delta}, E)$, in addition to the IA, also the Closure approximation has been assumed;
- for A>3, the evaluation of $P_N^3(\vec{p},\vec{p}+\vec{\Delta},E)$ is difficult such an effect is not under control: Conventional nuclear effects can be mistaken for exotic ones;
- for ³He it is possible: this makes it a unique target, even among the Few-Body systems.



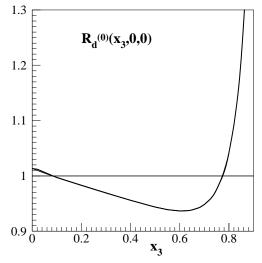


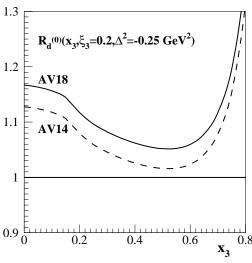
Dependence on the NN interaction

Nuclear effects are bigger than in the forward case: dependence on the potential

Forward case: Calculations using the AV14 or AV18 interactions are indistinguishable

Non-forward case: Calculations using the AV14 and AV18 interactions do differ:





³He calculations: summary

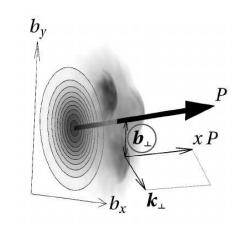
- Our results, for ³He: (S.S. PRC 2004, 2009; M. Rinaldi and S.S., PRC 2012, 2013)
 - * I.A. calculation of H_3, E_3, \tilde{H}_3 , within AV18;
 - * Interesting predictions: strong sensitivity to details of nuclear dynamics:
 - * extraction procedure of the neutron information, able to take into account all the nuclear effects encoded in an IA analysis;
- Coherent DVCS off ³He would be:
 - * a test of IA; relevance of non-nucleonic degrees of freedom;
 - * a test of the A- and isospin dependence of nuclear effects;
 - * complementary to incoherent DVCS off the deuteron in extracting the neutron information (with polarized targets).
- No data; no proposals at JLAB... difficult to detect slow recoils using a polarized target... But even unpolarized, ³He would be interesting!

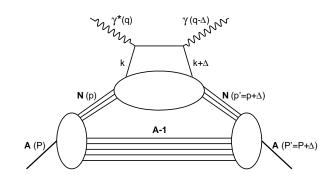
 Together with ³H, nice posibilities (flavor separation of nuclear effects, test of IA)
- **a**t the EIC, beams of polarized light nuclei will operate. ${}^{3}\vec{H}e$ can be used.
- Our codes available to interested colleagues.

Data on nuclear DVCS

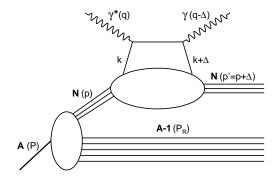
In impact parameter space, GPDs are *densities*:

$$\rho_{q}(x,\vec{b}_{\perp}) = \int \frac{d\vec{\Delta}_{\perp}}{(2\pi)^{2}} e^{i\vec{b}_{\perp}\cdot\vec{\Delta}_{\perp}} H^{q}(x,0,\Delta^{2})$$





Coherent DVCS (in IA): nuclear tomography;

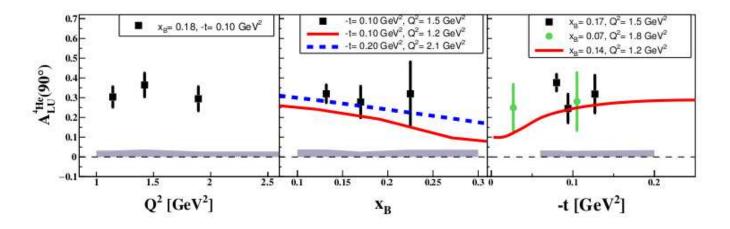


Incoherent DVCS (in IA): tomography of bound nucleons: realization of the EMC effect

- Very difficult to distinguish coherent and incoherent channels (for example, in Hermes data, Airapetian et al., PRC 2011).
- Large energy gap between the photons and the slow-recoiling systems: very different detection systems required at the same time... Very difficult...

... But possible! recently released from EG6@CLAS (M. Hattawy et al, PRL 119, 202004 (2017))

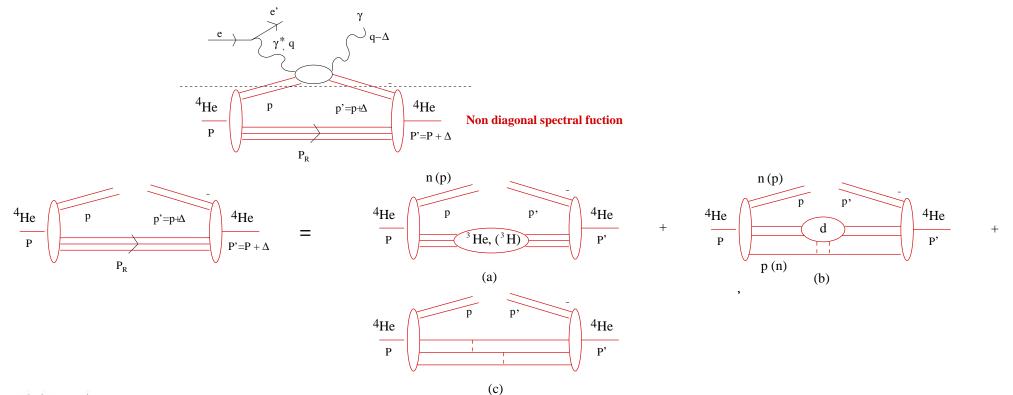
Coherent data (incoherent will follow) of DVCS off ⁴He:



- * "off-shell model" by Gonzalez, Liuti, Goldstein, Kathuria (PRC 88, 065206 (2013))
- * Relevant calculations by Guzey & Strikman (not shown here) (PRC 78, 025211 (2008))
- ightharpoonup 4He: J=0, I=0, easy formal description (1 chiral-even twist-2 GPD); but a true nucleus (deeply bound, dense...)
- Next generation of experiments (ALERT run-group), just approved (A-rate), will distinguish models: precisely what is needed to understand nuclei at parton level!
- lacksquare Good prospects for the EIC at low x_B , easy recoil detection...

DVCS off ⁴He

- CLAS data demonstrate that measurements are possible, separating coherent and incoherent channels;
- Realistic microscopic calculations are necessary. A collaboration is going on with Sara Fucini (Perugia, graduate student), Michele Viviani (INFN Pisa).
- Coherent channel in IA:



we are working on a); b) is feasible; c) is really challenging

Coherent DVCS off ⁴He: IA formalism

Convolution formula (contribution of E_q^N neglected):

$$H_{q}^{4He}(x,\Delta^{2},\xi) = \sum_{N} \int_{|x|}^{1} \frac{dz}{z} h_{N}^{4He}(z,\Delta^{2},\xi) H_{q}^{N}\left(\frac{x}{z},\Delta^{2},\frac{\xi}{z}\right)$$

Non-diagonal light-cone momentum distribution:

$$h_N^{^4He}(z,\Delta^2,\xi) = \int dE \int d\vec{p} P_N^{^4He}(\vec{p},\vec{p}+\vec{\Delta},E) \,\delta(z-\vec{p}^+/\vec{P}^+)$$

$$= \frac{M_A}{M} \int dE \int_{p_{min}}^{\infty} dp \tilde{M} p P_N^{^4He}(\vec{p},\vec{p}+\vec{\Delta},E) \,\delta\left(\tilde{z}\frac{\tilde{M}}{p} - \frac{p^0}{p} - \cos\theta\right)$$

with $\xi_A=\frac{M_A}{M}\xi$, $\tilde{z}=z+\xi_A$, $\tilde{M}=\frac{M}{M_A}(M_A+\frac{\Delta^+}{\sqrt{2}})$ and $M_{A_1}^{2*}$ is the squared mass of the final excited A-1-body state.

One needs therefore the non-diagonal spectral function and a model for nucleon GPDs.

Well known GPDs model of Goloskokov-Kroll (EPJA 47 212 (2011)) used for the nucleonic part. In principle valid at Q^2 values larger than those of interest here.

Coherent DVCS off ⁴He: our nuclear model input

$$P(\vec{p}, \vec{p} + \vec{\Delta}, E) = n_{0}(\vec{p}, \vec{p} + \vec{\Delta})\delta(E^{*}) + P_{1}(\vec{p}, \vec{p} + \vec{\Delta}, E)$$

$$= n_{0}(|\vec{p}|, |\vec{p} + \vec{\Delta}|, \cos \theta_{\vec{p}, \vec{p} + \vec{\Delta}})\delta(E^{*}) + P_{1}(|\vec{p}|, |\vec{p} + \vec{\Delta}|, \cos \theta_{\vec{p}, \vec{p} + \vec{\Delta}}, E)$$

$$\simeq a_{0}(|\vec{p}|)a_{0}(|\vec{p} + \vec{\Delta}|)\delta(E^{*}) + n_{1}(|\vec{p}|, |\vec{p} + \vec{\Delta}|)\delta(E^{*} - \bar{E})$$

with
$$n_1(|\vec{p}|) = n(|\vec{p}|) - n_0(|\vec{p}|)$$
, $E = E_{min} + E^*$, $n_0(|\vec{p}|) = |a_0(|\vec{p}|)|^2$, and

$$a_0(|\vec{p}|) = \langle \Phi_3(1,2,3)\chi_4\eta_4|j_0(|\vec{p}|R_{123,4})\Phi_4(1,2,3,4) \rangle$$

- $n_0(p)$, "ground", and n(p), "total" momentum distributions, evaluated realistically through 4-body and 3-body variational CHH wave functions, within the Av18 NN interaction, including UIX three-body forces.
- \bar{E} , average excitation energy of the recoiling system, given by the model diagonal spectral function, also based on Av18+UIX, described in M. Viviani et al., PRC 67 (2003) 034003, update of Ciofi & Simula, PRC 53 (1996) 1689.
- In summary: realistic Av18 + UIX momentum dependence; the dependence on E, angles and Δ is modelled and not yet realistic

Limits

S.Fucini, SS., M. Viviani in preparation

1 - Forward limit: the ratio:

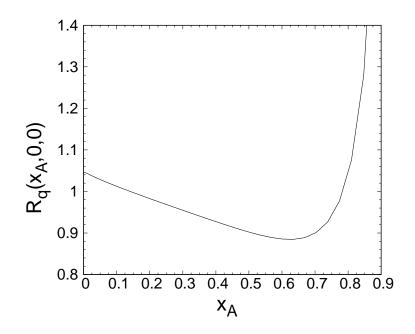
$$R_q(x,0,0) = \frac{H_q^{4He}(x,0,0)}{2H_q^p(x,0,0) + 2H_q^n(x,0,0)}$$
$$= \frac{q^{4He}(x)}{2q^p(x) + 2q^n(x)}$$

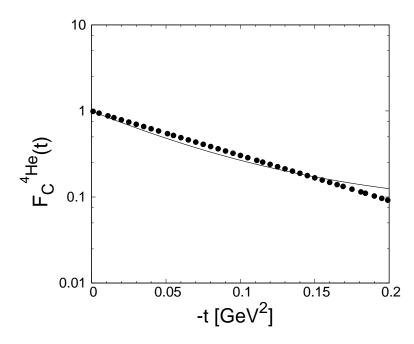
shows an EMC-like behavior;

2 - Charge F.F.:

$$\sum_{q} e_q \int dx H_q^{^4He}(x,\xi,\Delta^2) = F_C^{^4He}(\Delta^2)$$

reasonable agreement with data in the region relevant to the coherent process, $-t=-\Delta^2 \leq 0.2~{\rm GeV^2}.$

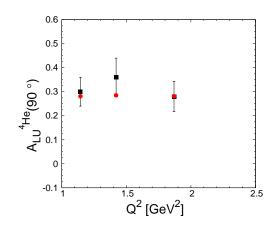


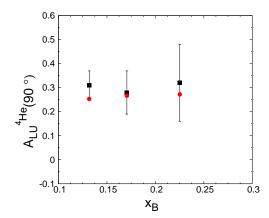


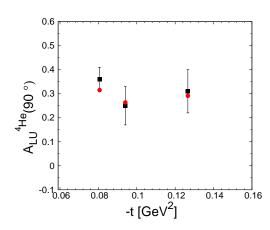
Comparison with EG6 data: A_{LU}

S. Fucini, S.S., M. Viviani in preparation

⁴He azimuthal beam-spin asymmetry $A_{LU}(\phi)$, for $\phi = 90^{\circ}$:







results of this aproach (dots) vs EG6 data (squares)

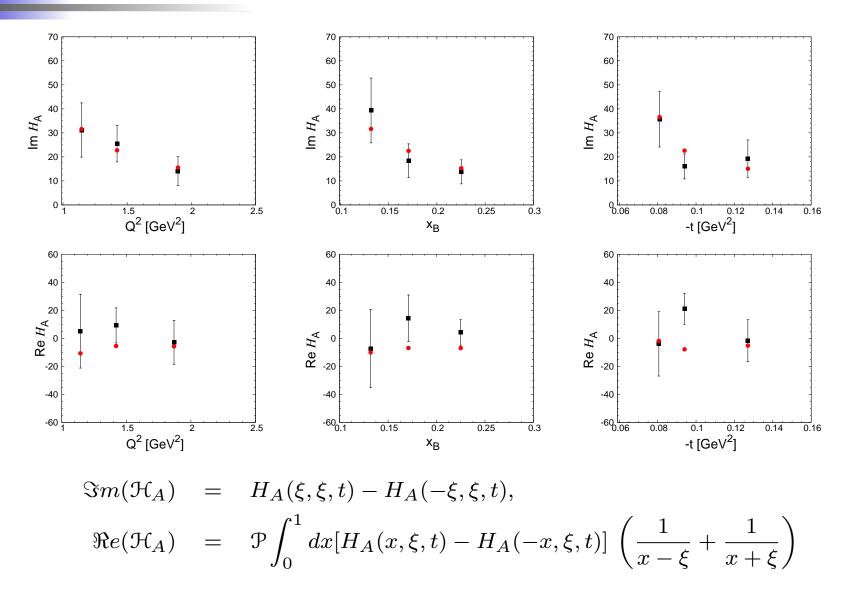
From left to right, the quantity is shown in the experimental Q^2 , x_B and t bins, respectively: very good agreement

$$A_{LU}(\phi) = \frac{\alpha_0(\phi) \Im m(\mathcal{H}_A)}{\alpha_1(\phi) + \alpha_2(\phi) \Re e(\mathcal{H}_A) + \alpha_3(\phi) \left(\Re e(\mathcal{H}_A)^2 + \Im m(\mathcal{H}_A)^2\right)}$$

 $\Re e(\mathcal{H}_A)$ and $\Im m(\mathcal{H}_A)$ experimentally extracted fitting these data using explicit forms for the kinematic factors α_i (Belitsky et al. PRD 2009)

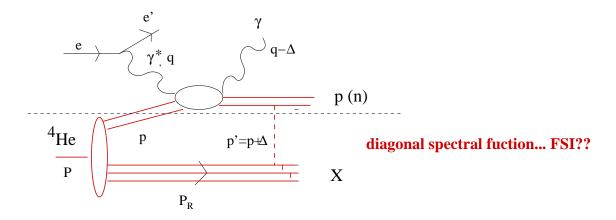
Comparison with EG6 data: $\Im m(\mathcal{H}_A)$ & $\Re e(\mathcal{H}_A)$

S. Fucini, S.S., M. Viviani in preparation

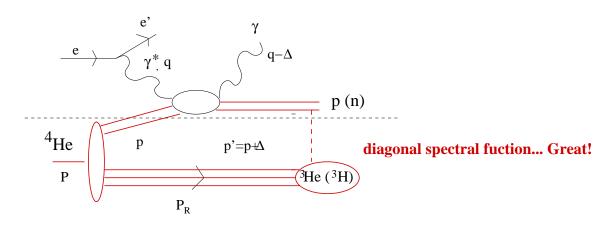


Very good agreement for $\Im m(\mathcal{H}_A)$, good agreement for $\Re e(\mathcal{H}_A)$ (data weakly sensitive to $\Re e(\mathcal{H}_A)$)

Incoherent DVCS off ⁴He in IA



Tagged! e.g., ${}^4 ext{He}(e,e'\gamma p)^3 ext{H}$ (arXiv:1708.00835 [nucl-ex] ightarrow Armstrong)



The quest for covariance

- Mandatory to achieve polinomiality for GPDs, and sum rules in DIS: number of particle and momentum sum rule not fulfilled at the same time in not covariant IA calculations
- Numerically not very relevant for forward Physics. It becomes relevant for non-diagonal observables at high momentum transfer. Example: form factors (well known since a long time, see, i.e., Cardarelli et al., PLB 357 (1995) 267)
- I do not expect big problems in the coherent case at low t;
 Crucial at higher t
- Certainly it has to be studied.

 For ³He, formal developments available in a Light-Front framework

 (A. Del Dotto, E. Pace, S.S., G. Salmè, PRC 95 (2017) 014001).

Talk here by Emanuele yesterday.

Calculations in progress, starting from a diagonal, spin-independent spectral function.

⁴He... Later (very cumbersome).

Conclusions

GPDs of He nuclei:

A complete impulse approximation realistic study is available (S.S. PRC 2004, PRC 2009; M. Rinaldi and S.S., PRC 2012, PRC 2013)

- * No data; proposals? Prospects al JLAB-12 and EIC;
- * planned LF calculation

2 - DVCS off ⁴He:

* Coherent: a calculation (not yet realistic) with basic ingredients (GK model plus a model spectral function based on Av18 + UIX) describe well the data available from JLab at 6 GeV; (S. Fucini, S.S., M. Viviani, in preparation).

Straightforward and workable approach, suitable for planning new measurements.

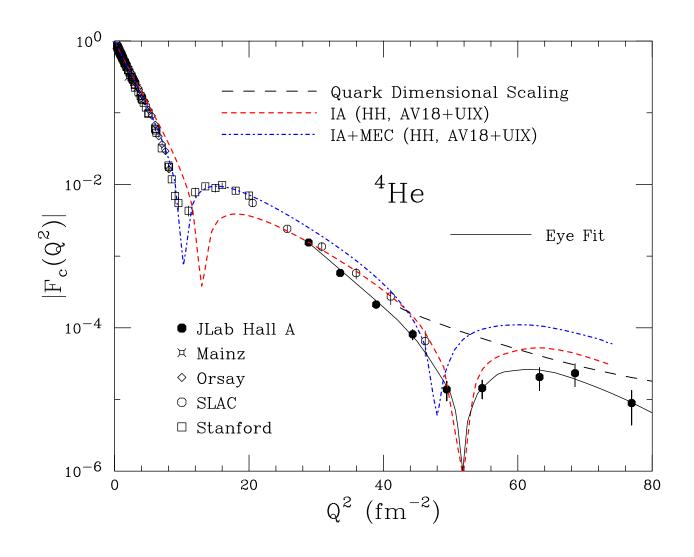
- * New data expected at 12 GeV will require much more precise nuclear description (in progress)
- * In the meantime we plan to face the incoherent process

Our spirit: introduce new ingredients one at a time

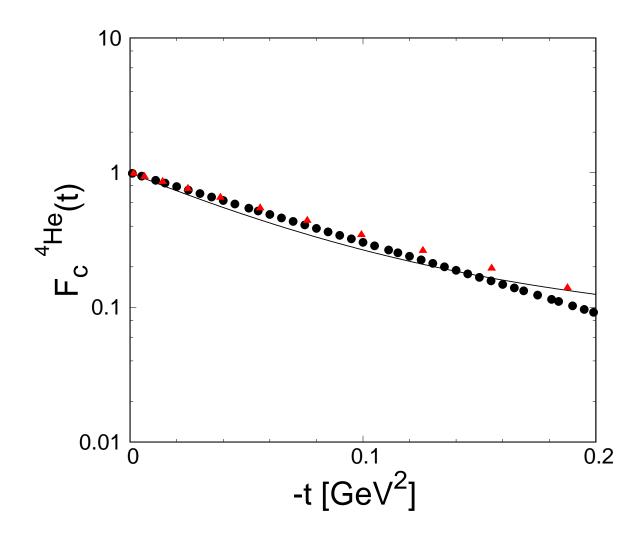
Occam's razor: "Frustra fit per plura quod potest fieri per pauciora"

(It is futile to do with more things what can be done with fewer)

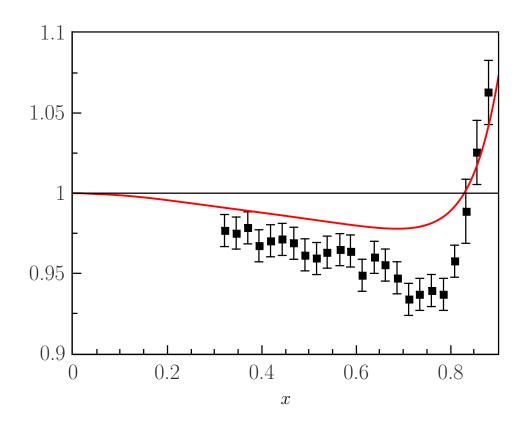
⁴He FF



⁴He FF - IA



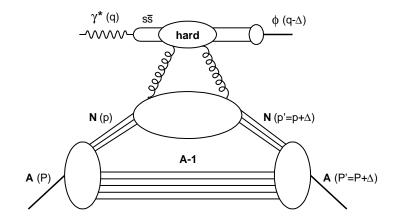
³He EMC effect IF



Many other issues...

x-moments of GPDs (ffs of energy momentum tensor): information on spatial distribution of energy, momentum and forces experienced by the partons.
 Predicted an A dependence stronger than in IA (not seen at HERMES);
 M. Polyakov, PLB 555, 57 (2003); H.C. Kim et al. PLB 718, 625 (2012)...

Gluon GPDs in nuclei



For GPDs, shadowing (low x_B) stronger than for PDFs

A. Freund and M. Strikman, PRC 69, 015203 (2004)...

Exclusive ϕ — electroproduction, unique source of information, studied by ALERT, waiting for EIC...

Deuteron: an issue aside.

Extraction of the neutron information; access to a new class of distribution (J=1) Studied by different collaborations (by ALERT too, coherent and incoherent DVCS)

theory: Cano and Pire EPJA 19,423 (2004); Taneja et al. PRD 86,036008 (2012)...

