Previously, on Short-Range Correlations Experiments (a summary of 6 GeV measurements)

Exposing Novel Quark and Gluon Effects in Nuclei

Nadia Fomin University of Tennessee April 19, 2018

What have we learned from 6GeV era?

- Scaling of x>1 cross sections
 relative to the deuteron
 --implies high momentum tail is a result of short-range correlations
 NP dominance of short-range pairs
- NP dominance of short-range pairs --tensor interaction
- No trivial (A or density) dependence for SRC behavior or EMC effect

--from high-precision light nuclei data

Suggestive correlation between EMC effect and SRC plateaus

Choosing an Appropriate Microscope

1<x<2 is combination of 2-body and 1*-body contributions; 3+ body effect assumed to be small (*=Fermi-smeared) Log-ish(x_{Bj}) 5

1<x<2 is combination of 2-body and 1*-body contributions; 3+ body effect assumed to be small (*=Fermi-smeared) Log-ish(x_{Bj})

6

High momentum tails in A(e,e'p)

- E89-004: Measure of ³He(e,e'p)d
- Measured far into high momentum tail: Cross section is ~5-10x expectation

Difficulty

 High momentum pair can come from SRC (initial state)

OR

• Final State Interactions (FSI) and Meson Exchange Contributions (MEC)

A(e,e'p)

²H(e,e'p) Mainz PRC 78 054001 (2008)

E =0.855 GeV θ = 45° E'=0.657 GeV Q²=0.33 GeV² x=0.88

Unfortunately: FSI, MECs overwhelm the high momentum nucleons

FIG. 1: The experimental D(e,e'p)n cross section as a function of missing momentum measured at MAMI for $Q^2 = 0.33$ $(\text{GeV/c})^2$ [4] compared to calculations [5] with (solid curve) and without (dashed curve) MEC and IC. Both calculations include FSI. The low p_m data have been re-analyzed and used in this work to determine f_{LT} (color online).

Inclusive Scattering

- Relative measurement
- Reduced FSI
- Test scaling in x and Q^2
- No direct information on isospin structure
 - Only via target isospin structure
- No direct information on momentum distribution for A>2

Inclusive Scattering

- Relative measurement
- Reduced FSI
- Test scaling in x and Q²
- No direct information on isospin structure
 - Only via target isospin structure
- No direct information on momentum distribution for A>2

High momentum nucleons

- Short Range Correlations

Try inclusive scattering! Select kinematics such that the initial nucleon momentum $> k_f$

High momentum nucleons

$$\frac{d\sigma^{QE}}{d\Omega dE'} \propto \int dk \int dE \sigma_{ei} S_i(k, E) \delta(Arg)$$

$$Arg = v + M_A - \sqrt{M^2 + p^2} - \sqrt{M_{A-1}^{*2} + k^2}$$

$$F(y, \mathbf{q}) = \frac{d^2 \sigma}{d\Omega dv} \frac{1}{(Z \overline{\sigma}_p + N \overline{\sigma}_n)} \frac{\mathbf{q}}{\sqrt{M^2 + (y+q)^2}}$$

$$= 2\pi \int_0^\infty n(k) k dk \qquad \text{Ok for A=2}$$

Ok for A=2

$$\frac{2N SRC}{N SRC}$$

- Short Range Correlations

Short Range Correlations

- To experimentally probe SRCs, must be in the high-momentum region (x>1)
- To measure the relative probability of finding a correlation, ratios of heavy to light nuclei are taken
- In the high momentum region, FSIs are thought to be confined to the SRCs and therefore, cancel in the cross section ratios

$$\sigma(x, Q^2) = \sum_{j=1}^{A} A \frac{1}{j} a_j(A) \sigma_j(x, Q^2)$$

$$= \frac{A}{2} a_2(A) \sigma_2(x, Q^2) +$$

$$\frac{A}{3}a_3(A)\sigma_3(x,Q^2) + \dots$$

1.4<x<2 => 2 nucleon correlation

$$\frac{2}{A}\frac{\sigma_A}{\sigma_D} = a_2(A)$$

15

Before my time

- Moderate Q² data from SLAC
- Originally analyzed in the *y*-scaling picture

$$\sigma(x, Q^{2}) = \sum_{j=1}^{A} A \frac{1}{j} a_{j}(A) \sigma_{j}(x, Q^{2})$$
$$= \frac{A}{2} a_{2}(A) \sigma_{2}(x, Q^{2}) +$$
$$\frac{A}{3} a_{3}(A) \sigma_{3}(x, Q^{2}) + \dots$$

 $2/\Delta \sigma^{I\!R}(\mathbf{x},\mathbf{Q}^8)/\sigma^{I\!I}(\mathbf{x},\mathbf{Q}^8)$

 $\mathbb{Z}/\mathbb{A} \ \sigma^{\mathbf{F}e}(\mathbf{x},\mathbf{Q}^2)/\sigma^{\mathbf{D}}(\mathbf{x},\mathbf{Q}^3)$

16

E02-019: 2N correlations in A/D ratios

А	$\theta_e = 18^{\circ}$
³ He	$2.14{\pm}0.04$
$^{4}\mathrm{He}$	$3.66{\pm}0.07$
Be	$4.00 {\pm} 0.08$
\mathbf{C}	$4.88 {\pm} 0.10$
$\mathbf{C}\mathbf{u}$	$5.37 {\pm} 0.11$
Au	$5.34 {\pm} 0.11$
$\langle Q^2 \rangle$	$2.7 \ {\rm GeV}^2$
x_{\min}	1.5

Fomin et al, PRL **108** (2012) Jlab E02-019

Note: $(a_2 = \sigma_A / \sigma_D)! =$ Relative #of SRCs

Inclusive Scattering

- Relative measurement
- Reduced FSI
- Test scaling in x and Q²
- No direct information on isospin structure
 - Only via target isospin structure
- No direct information on momentum distribution for A>2

Inclusive Scattering

- Relative measurement
- Reduced FSI
- Test scaling in x and Q²
- No direct information on isospin structure
 - Only via target isospin structure
- No direct information on momentum

Test scaling in x and Q²

Kinematic cutoff is A-dependent

- For heavy nuclei, the minimum momentum changes \rightarrow heavier recoil system requires less kinetic energy to balance the momentum of the struck nucleon
- Larger fermi momenta for A>2 \rightarrow MF contribution persists for longer

2N knockout experiments establish NP dominance

- Knockout high-initialmomentum proton, look for correlated nucleon partner.
- For 300 < P_{miss} < 600 MeV/c all nucleons are part of 2N-SRC pairs: 90% np, 5% pp (nn)

R. Subedi et al., Science 320, 1476 (2008)

R. Shneor et al., PRL 99, 072501 (2007)

2N knockout experiments establish NP dominance

R. Subedi et al., Science 320, 1476 (2008)

R. Shneor et al., PRL 99, 072501 (2007)

NP dominance

NP dominance: momentum dependent

Data mining using CLAS NP dominance continues for heavy nuclei

Slide courtesy O. Hen

Assuming scattering off 2N-SRC pairs:

- (e,e'p) is sensitive to *np* and *pp* pairs
- (e,e'pp) is sensitive to *pp* pairs alone
- => (e,e'pp)/(e,e'p) ratio is sensitive to the *np/pp* ratio

2N correlations

Linear relationship with EMC effect

More nucleons in a correlation

1.4<x<2 => 2 nucleon correlation 2.4<x<3 => 3 nucleon correlation

3N correlations (x>2 inclusive scattering)

Have we actually seen 3N SRC in ratios?

Douglas W. Higinbotham1 and Or Hen2

3N correlations - still looking

Search for three-nucleon short-range correlations in light nuclei

Z. Ye,^{1,2,3} P. Solvignon,^{4,5,*} D. Nguyen,² P. Aguilera,⁶ Z. Ahmed,⁷ H. Albataineh,⁸ K. Allada,⁵ B. Anderson,⁹ D. Anez,¹⁰ K. Aniol,¹¹ J. Annand,¹² J. Arrington,¹ T. Averett,¹³ H. Baghdasaryan,² X. Bai,¹⁴ A. Beck,¹⁵ S. Beck,¹⁵ V. Bellini,¹⁶ F. Benmokhtar,¹⁷ A. Camsonne,⁵ C. Chen,¹⁸ J.-P. Chen,⁵ K. Chirapatpimol,² E. Cisbani,¹⁹ M. M. Dalton,^{2,5} A. Daniel,²⁰ D. Day,² W. Deconinck,²¹ M. Defurne,²² D. Flay,²³ N. Fomin,²⁴ M. Friend,²⁵ S. Frullani,¹⁹ E. Fuchey,²³ F. Garibaldi,¹⁹ D. Gaskell,⁵ S. Gilad,²¹ R. Gilman,²⁶ S. Glamazdin,²⁷ C. Gu,² P. Guèye,¹⁸ C. Hanretty,² J.-O. Hansen,⁵ M. Hashemi Shabestari,² O. Hen,²⁸ D. W. Higinbotham,⁵ M. Huang,³ S. Iqbal,¹¹ G. Jin,² N. Kalantarians,² H. Kang,²⁹ A. Kelleher,²¹ I. Korover,²⁸ J. LeRose,⁵ J. Leckey,³⁰ R. Lindgren,² E. Long,⁹ J. Mammei,³¹ D. J. Margaziotis,¹¹ P. Markowitz,³² D. Meekins,⁵ Z. Meziani,²³ R. Michaels,⁵ M. Mihovilovic,³³ N. Muangma,²¹ C. Munoz Camacho,³⁴ B. Norum,² Nuruzzaman,³⁵ K. Pan,²¹ S. Phillips,⁴ E. Piasetzky,²⁸ I. Pomerantz,^{28,36} M. Posik,²³ V. Punjabi,³⁷ X. Qian,³ Y. Qiang,⁵ X. Qiu,³⁸ P. E. Reimer,¹ A. Rakhman,⁷ S. Riordan,^{2,39} G. Ron,⁴⁰ O. Rondon-Aramayo,² A. Saha,^{5,*} L. Selvy,⁹ A. Shahinyan,⁴¹ R. Shneor,²⁸ S. Sirca,^{42,33} K. Slifer,⁴ N. Sparveris,²³ R. Subedi,² V. Sulkosky,²¹ D. Wang,² J. W. Watson,⁹ L. B. Weinstein,⁸ B. Wojtsekhowski,⁵ S. A. Wood,⁵ I. Yaron,²⁸ X. Zhan,¹ J. Zhang,⁵ Y. W. Zhang,²⁶ B. Zhao,¹³ X. Zheng,² P. Zhu,⁴³ and R. Zielinski⁴ (The Jefferson Lab Hall A Collaboration)

Can we see a second plateau?

3N correlations – are we there yet?

 α_i represents the light-cone momentum fraction of 3N SRCs carried by the correlated nucleon *i*

We were so close

3N correlation measurements – Hall C (soon?)

Earlier this spring in Hall C

(a) yields R(³He/³H) ≈ 1.4 if configuration is isospin-independent, as does (b)
(a) yields R(³He/³H) ≈ 3.0 if nucleon #3 is always the doubly-occurring nucleon
(a) yields R(³He/³H) ≈ 0.3 if nucleon #3 is always the singly-occurring nucleon

R≠1.4 implies isospin dependence AND non-symmetric momentum sharing

The experiment formerly known as CaFe

Goals are to extract the

• ratios of high to low momentum protons in each of D, C, ⁴⁰Ca, ⁴⁸Ca, and ⁵⁴Fe,

• ratios of high-momentum protons in heavier nuclei to deuterium and in ⁴⁰Ca to C, ⁴⁰Ca to ⁴⁸Ca and in ⁵⁴Fe to ⁴⁸Ca

• double ratios of high to low momentum protons in heavier nuclei to deuterium, ⁴⁰Ca to C, ⁴⁰Ca relative to ⁴⁸Ca, and in ⁵⁴Fe relative to ⁴⁸Ca.

"We will need to correct each of these ratios for the effects of final state interactions"

FIG. 8: The calculated ${}^{3}\text{He}(e, e'p)$ ratio of the cross section which includes rescattering of the struck nucleon (FSI) to the PWIA cross section for $p_{miss} = 0.2$ (blue), 0.4 (green), and 0.5 (red) GeV/c as a function of θ_{rq} , the angle between the recoil momentum and \vec{q} in the laboratory frame [45].

In Medium Proton Structure Functions, SRC, and the EMC effect: E12-11-003A

- Structure Functions of bound protons in deuterium as a function of their initial momentum
- "Tagging" the deep inelastic scattering on the deuteron with high momentum recoiling neutrons emitted at large angle relative to the momentum transfer

In-Medium Nucleon Structure Functions

[E11-107: O. Hen, L.B. Weinstein, S. Gilad, S.A. Wood]

- DIS scattering from nucleon in deuterium
- Tag high-momentum struck nucleons by detecting backward "spectator" nucleon in Large-Angle Detector

In-Medium Nucleon Form Factors [E11-002: E. Brash, G. M. Huber, R. Ransom, S. Strauch]

 Compare proton knockout from dense and thin nuclei: ⁴He(e,e'p)³H and

²H(e,e′p)n

- Modern, rigorous
 ²H(e,e'p)n calculations show reaction-dynamics effects and FSI will change the ratio at most 8%
- QMC model predicts 30% deviation from free nucleon at large virtuality

S. Jeschonnek and J.W. Van Orden, Phys. Rev. C 81, 014008 (2010) and Phys. Rev. C 78, 014007 (2008); M.M. Sargsian, Phys. Rev. C82, 014612 (2010)

Summary

- SRCs and EMC effect have been under the microscope for many decades 6GeV era at Jlab has yielded interesting data
- 12 GeV experiments continue the search
- Upcoming and current experiments in Halls A/C
 - → Study short range correlations in 3 He/ 3 H
 - \rightarrow Map out nuclear dependencies of clustering
 - → Study how quark distributions are modified in nuclei over free nucleons
- New results in the next few years!