Spin physics with a polarized deuteron

Wim Cosyn

Ghent University, Belgium
Exposing Novel Quark and Gluon Effects in Nuclei ECT*, Trento

Outline

- Tagged spectator DIS with a polarized deuteron WC, M. Sargsian, Ch. Weiss, in preparation
- Inclusive DIS with tensor polarized deuteron WC, Y. Dong, S. Kumano, M. Sargsian, PRD95 074036 ('17)
- Transversity GPDs for the deuteron WC, B. Pire, in preparation

Tagged spectator DIS process with deuteron

- DIS off a nuclear target with a slow (relative to
 nucleus c.m.) nucleon detected in the final state
- Control nuclear configuration
- Advantages for the deuteron
- simple $N N$ system, non-nucleonic $(\Delta \Delta)$ dof suppressed
- active nucleon identified
- recoil momentum selects nuclear configuration (medium modifications)
- limited possibilities for nuclear FSI, calculable
- Wealth of possibilities to study (nuclear) QCD dynamics
- Will be possible in a wide kinematic range @ EIC (polarized)
- Suited for colliders: no target material, forward detection, transverse pol.
fixed target CLAS BONuS limited to recoil momenta $\sim 70 \mathrm{MeV}$

Pole extrapolation for on-shell nucleon structure

- Allows to extract free neutron structure in a model independent way
- Recoil momentum p_{R} controls off-shellness of neutron $t^{\prime} \equiv t-m_{N}^{2}$
- Free neutron at pole $t-m_{N}^{2} \rightarrow 0$: "on-shell extrapolation"
- Small deuteron binding energy results in small extrapolation length
- Eliminates nuclear binding and FSI effects [Sargsian,Strikman PLB '05]

■ D-wave suppressed at on-shell point \rightarrow neutron ~100\% polarized

- Precise measurements of neutron (spin) structure at an EIC

What is needed?

- Theoretical Formalism
- General expression of SIDIS for a polarized spin 1 target
- Tagged spectator DIS is SIDIS in the target fragmentation region

$$
\vec{e}+\vec{T} \rightarrow e^{\prime}+X+h
$$

- Dynamical model to express structure functions of the reaction
- First step: impulse approximation (IA) model
- FSI corrections (unpolarized)
- Light-front structure of the deuteron
- Natural for high-energy reactions as off-shellness of nucleons in LF quantization remains finite

Polarized spin 1 particle

■ Spin state described by a 3*3 density matrix in a basis of spin 1 states polarized along the collinear virtual photon-target axis

$$
W_{D}^{\mu \nu}=\operatorname{Tr}\left[\rho_{\lambda^{\prime}} W^{\mu v}\left(\lambda^{\prime} \lambda\right)\right]
$$

- Characterized by 3 vector and 5 tensor parameters

$$
S^{\mu}=\left\langle\hat{W}^{\mu}\right\rangle, \quad T^{\mu \nu}=\frac{1}{2} \sqrt{\frac{2}{3}}\left\langle\hat{W}^{\mu} \hat{W}^{\nu}+\hat{W}^{\nu} \hat{W}^{\mu}+\frac{4}{3}\left(g^{\mu \nu}-\frac{\hat{P}^{\mu} \hat{P}^{\nu}}{M^{2}}\right)\right\rangle
$$

- Split in longitudinal and transverse components

$$
\rho_{\lambda \lambda^{\prime}}=\frac{1}{3}\left[\begin{array}{ccc}
1+\frac{3}{2} S_{L}+\sqrt{\frac{3}{2}} T_{L L} & \begin{array}{c}
\frac{3}{2 \sqrt{2}} S_{T} e^{-i\left(\phi_{h}-\phi_{S}\right)} \\
+\sqrt{3} T_{L T} e^{-i\left(\phi_{h}-\phi_{T_{L}}\right)}
\end{array} & \sqrt{\frac{3}{2}} T_{T T} e^{-i\left(2 \phi_{h}-2 \phi_{T}\right)} \\
\frac{3}{2 \sqrt{2}} S_{T} e^{i\left(\phi_{h}-\phi_{S}\right)} & 1-\sqrt{6} T_{L L} & \frac{3}{2 \sqrt{2}} S_{T} e^{-i\left(\phi_{h}-\phi_{S}\right)} \\
+\sqrt{3} T_{L T} e^{i\left(\phi_{h}-\phi_{T_{L}}\right)} & & -\sqrt{3} T_{L T} e^{-i\left(\phi_{h}-\phi_{T_{L}}\right)} \\
\sqrt{\frac{3}{2}} T_{T T} e^{i\left(2 \phi_{h}-2 \phi_{T_{T}}\right)} & \frac{3}{2 \sqrt{2}} S_{T} e^{i\left(\phi_{h}-\phi_{S}\right)} & 1-\frac{3}{2} S_{L}+\sqrt{\frac{3}{2}} T_{L L} \\
& -\sqrt{3} T_{L T} e^{i\left(\phi_{h}-\phi_{T}\right)} &
\end{array}\right]
$$

Spin 1 SIDIS: General structure of cross section

- To obtain structure functions, enumerate all possible tensor structures that obey hermiticity and transversality condition ($q W=W q=0$)
- Cross section has 41 structure functions,

$$
\frac{d \sigma}{d x d Q^{2} d \phi_{\prime^{\prime}}}=\frac{y^{2} \alpha^{2}}{Q^{4}(1-\epsilon)}\left(F_{U}+F_{S}+F_{T}\right) d \Gamma_{P_{h}},
$$

- $U+S$ part identical to spin $1 / 2$ case [Bacchetta et al. JHEP ($\cdot 07$)]

$$
\begin{aligned}
F_{U}= & F_{U U, T}+\epsilon F_{U U, L}+\sqrt{2 \epsilon(1+\epsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}+\epsilon \cos 2 \phi_{h} F_{U U}^{\cos 2 \phi_{h}}+h \sqrt{2 \epsilon(1-\epsilon)} \sin \phi_{h} F_{L U}^{\sin \phi_{h}} \\
F_{S}=S_{L}[& {\left[\sqrt{2 \epsilon(1+\epsilon)} \sin \phi_{h} F_{U S_{L}}^{\sin \phi_{h}}+\epsilon \sin 2 \phi_{h} F_{U S_{L}}^{\sin 2 \phi_{h}}\right] } \\
& +S_{L h}\left[\sqrt{1-\epsilon^{2}} F_{L S_{L}}+\sqrt{2 \epsilon(1-\epsilon)} \cos \phi_{h} F_{L S_{L}}^{\cos \phi_{h}}\right] \\
& +S_{\perp}\left[\sin \left(\phi_{h}-\phi_{S}\right)\left(F_{U S_{T}, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\epsilon F_{U S_{T} L}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right)+\epsilon \sin \left(\phi_{h}+\phi_{S}\right) F_{U S_{T}}^{\sin \left(\phi_{h}+\phi_{S}\right)}\right. \\
& \left.+\epsilon \sin \left(3 \phi_{h}-\phi_{S}\right) F_{U S_{T}}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}+\sqrt{2 \epsilon(1+\epsilon)}\left(\sin \phi_{S} F_{U S_{T}}^{\sin \phi_{S}}+\sin \left(2 \phi_{h}-\phi_{S}\right) F_{U S_{T}}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}\right)\right] \\
& +S_{\perp} h\left[\sqrt{1-\epsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) F_{L S_{T}}^{\cos \left(\phi_{h}-\phi_{S}\right)}+\right. \\
& \left.\sqrt{2 \epsilon(1-\epsilon)}\left(\cos \phi_{S} F_{L S_{T}}^{\cos \phi_{S}}+\cos \left(2 \phi_{h}-\phi_{S}\right) F_{L S_{T}}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\right)\right],
\end{aligned}
$$

Spin 1 SIDIS: General structure of cross section

- To obtain structure functions, enumerate all possible tensor structures that obey hermiticity and transversality condition ($q W=W q=0$)
- Cross section has 41 structure functions,

$$
\frac{d \sigma}{d x d Q^{2} d \phi_{l^{\prime}}}=\frac{y^{2} \alpha^{2}}{Q^{4}(1-\epsilon)}\left(F_{U}+F_{S}+F_{T}\right) d \Gamma_{P_{h}}
$$

- 23 SF unique to the spin 1 case (tensor pol.), 4 survive in inclusive (b_{1-4}) [Hoodbhoy, Jaffe, Manohar PLB'88]

$$
\begin{aligned}
F_{T}=T_{L L} & {\left[F_{U T_{L L}, T}+\epsilon F_{U T_{L L}, L}+\sqrt{2 \epsilon(1+\epsilon)} \cos \phi_{h} F_{U T_{L L}}^{\cos \phi_{h}}+\epsilon \cos 2 \phi_{h} F_{U T_{L L}}^{\cos 2 \phi_{h}}\right] } \\
& +T_{L L} h \sqrt{2 \epsilon(1-\epsilon)} \sin \phi_{h} F_{L T_{L L}}^{\sin \phi_{h}} \\
& +T_{L \perp}[\cdots]+T_{L \perp} h[\cdots] \\
& +T_{\perp \perp}\left[\cos \left(2 \phi_{h}-2 \phi_{T_{\perp}}\right)\left(F_{U T_{T T}, T}^{\cos \left(2 \phi_{h}-2 \phi_{T_{\perp}}\right)}+\epsilon F_{U T_{T T}, L}^{\cos \left(2 \phi_{h}-2 \phi_{T_{\perp}}\right)}\right)\right. \\
& +\epsilon \cos 2 \phi_{T_{\perp}} F_{U T_{T T}}^{\cos 2 \phi_{T_{\perp}}}+\epsilon \cos \left(4 \phi_{h}-2 \phi_{T_{\perp}}\right) F_{U T_{T T}}^{\cos \left(4 \phi_{h}-2 \phi_{T_{\perp}}\right)} \\
& \left.+\sqrt{2 \epsilon(1+\epsilon)}\left(\cos \left(\phi_{h}-2 \phi_{T_{\perp}}\right) F_{U T_{T T}}^{\cos \left(\phi_{h}-2 \phi_{T_{\perp}}\right)}+\cos \left(3 \phi_{h}-2 \phi_{T_{\perp}}\right) F_{U T_{T T}}^{\cos \left(3 \phi_{h}-2 \phi_{T_{\perp}}\right)}\right)\right] \\
& +T_{\perp \perp} h[\cdots]
\end{aligned}
$$

Tagged DIS with deuteron: model for the IA

- Hadronic tensor can be written as a product of nucleon hadronic tensor with deuteron light-front densities

$$
W_{D}^{\mu \nu}\left(\lambda^{\prime}, \lambda\right)=4(2 \pi)^{3} \frac{\alpha_{R}}{2-\alpha_{R}} \sum_{i=U, z, x, y} W_{N, i}^{\mu \nu} \rho_{D}^{i}\left(\lambda^{\prime}, \lambda\right),
$$

All SF can be written as

$F_{i j}^{k}=\{$ kin. factors $\} \times\left\{F_{1,2}\left(\tilde{x}, Q^{2}\right)\right.$ or $\left.g_{1,2}\left(\tilde{x}, Q^{2}\right)\right\} \times\{$ bilinear forms in deuteron radial wave function $U(k), W(k)\}$

- In the IA the following structure functions are zero \rightarrow sensitive to FSI
- beam spin asymmetry $\left[F_{L U}^{\sin \phi_{h}}\right]$
- target vector polarized single-spin asymmetry [8 SFs]
- target tensor polarized double-spin asymmetry [7 SFs]

Deuteron light-front wave function

- Up to momenta of a few 100 MeV dominated by NN component
- Can be evaluated in LFQM [Coester,Keister,Polyzou et al.] or covariant Feynman diagrammatic way [Frankfurt,Sargsian,Strikman]
■ One obtains a Schrödinger (non-rel) like eq. for the wave function components, rotational invariance recovered
- Light-front WF obeys baryon and momentum sum rule

$$
\psi_{\lambda}^{D}\left(\boldsymbol{k}_{f}, \lambda_{1}, \lambda_{2}\right)=\sqrt{E_{k_{f}}} \sum_{\lambda_{1}^{\prime} \prime_{2}^{\prime}} \mathcal{D}_{\lambda_{1}^{\prime} \prime_{1}}^{\frac{1}{2}}\left[R _ { f c } (k _ { 1 _ { f } ^ { \prime } } ^ { \mu } / m _ { N }) D _ { \lambda _ { 2 } \lambda _ { 2 } ^ { \prime } } ^ { \frac { 1 } { 2 } } \left[R_{f c}\left(k_{2_{f}^{\prime}}^{\mu} / m_{N}\right) \Phi_{\lambda}^{D}\left(\boldsymbol{k}_{f}, \lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right)\right.\right.
$$

- Differences with non-rel wave function:
- appearance of the Melosh rotations to account for light-front quantized nucleon states
- \boldsymbol{k}_{f} is the relative 3-momentum of the nucleons in the light-front boosted rest frame of the free 2-nucleon state (so not a "true" kinematical variable)

Polarized structure function

$$
\begin{gathered}
\text { On-shell extrapolation of double spin asymm. } \\
A_{\| \|}=\frac{\sigma(+)-\sigma(-+)-\sigma(+-)+\sigma(-)}{\sigma(++)+\sigma(-+)+\sigma(+-)+\sigma(-)}\left[\phi_{h} \text { avg }\right]=\frac{F_{L S} s_{L}}{F_{T}+\epsilon F_{L}}=D \frac{g_{1 n}}{F_{1 n}}+\cdots
\end{gathered}
$$

- Clear contribution from D-wave at finite recoil momenta
- Relativistic nuclear effects through Melosh rotations, grow with recoil momenta
- Both effects drop out near the on-shell extrapolation point

Tagging: polarized neutron structure

On-shell extrapolation of double spin asymm.

$$
A_{\|}=\frac{\sigma(++)-\sigma(-+)-\sigma(+-)+\sigma(--)}{\sigma(++)+\sigma(-+)+\sigma(+-)+\sigma(--)}\left[\phi_{h \mathrm{avg}}\right]=\frac{F_{L S_{L}}}{F_{T}+\epsilon F_{L}}=D \frac{g_{1 n}}{F_{1 n}}+\cdots
$$

JLab LDRD arXiv:1407.3236, arXiv:1409.5768

- Systematic uncertainties cancel in ratio (momentum smearing, resolution effects)
- Statistics requirements
- Physical asymmetries $\sim 0.05-0.1$
- Effective polarization $P_{e} P_{D} \sim 0.5$
- Luminosity required $\sim 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- Precise measurement of neutron spin structure
- non-singlet/singlet QCD evolution
- pdf flavor separation $\Delta u, \Delta d$. ΔG through singlet evolution

Tagging: EMC effect

average-size

small-size

Final-state interactions

- Medium modification of nucleon structure embedded in nucleus (EMC effect)
- dynamical origin?
- caused by which momenta/distances in nuclear WF
- spin-isospin dependence?
- tagged EMC effect
- recoil momentum as extra handle on medium modification (off-shellness, size of nuclear configuration) away from the on-shell pole
- EIC: Q^{2} evolution, gluons, spin dependence!
- Interplay with final-state interactions!
- use $\tilde{x}=0.2$ to constrain FSI
- constrain medium modification at higher \tilde{x}

Final-state interactions: three physical pictures

shadowing, low x

DIS regime, intermediate x

- Shadowing in inclusive DIS $x \ll 10^{-1}$
- Diffractive DIS on single nucleon (leading twist, HERA)
- Interference of DIS on nucleon 1 and 2
- Calculable in terms of nucleon diffractive structure functions [Gribov 70s, Frankfurt, Guzey,Strikman '02+]
- FSI between slow hadrons from the DIS products and spectator nucleon, fast hadrons hadronize after leaving the nucleus.
- Data show slow hadrons in the target fragmentation region are mainly nucleons.
- Input needed from nucleon target fragmentation data \rightarrow also possible at EIC M. Strikman,Ch. Weiss arXiv:1706.02244
- rescattering of resonance-like structure with spectator nucleon in eikonal approximation [Deeps,BONuS].
WC,M. Sargsian arXiv:1704.06117

FSI 1: Shadowing at small x in tagged DIS

[Guzey,Strikman, Weiss; in preparation]

■ Explore shadowing through recoil momentum dependence

- Shadowing enhanced in tagged DIS compared to inclusive
- enhancement factor from AGK rules
- shadowing term drops slower with p_{R} than IA
- FSI contributions between slow p and n in diffractive events
- Large FSI effects in diffractive amplitudes ($\sim 40 \%$), also at zero spectator momenta due to orthogonality of $n p$ state to deuteron
- Effects smaller in tagged as diffractive are $\sim 10 \%$ of total events
- Possibilities to study diffractive events by double tagging

FSI 2: intermediate x model

(b)

Strikman, Weiss, arXiv:1706.02244, PRC7 035209 ('18)

- Features of the FSI of slow hadrons with spectator nucleon are similar to what is seen in quasi-elastic deuteron breakup.
- Inclusion FSI diagram adds two contributions: FSI term (\sim absorption, negative) and FSI^{2} term (\sim refraction, postive)
- At low momenta ($p_{r}<200 \mathrm{MeV}$) FSI term dominates, at larger momenta FSI^{2} dominates.

■ Both contributions vanish at the pole \rightarrow pole extrapolation still feasible

- Calculation with realistic deuteron wf (AV18)

Tagging: developments and extensions

- Final-state interactions
- in tagged $\vec{e}+\vec{D}$
- maximized/minimized by choice of kinematics. Constrain FSI models.
- azimuthal and spin observables non-zero through FSI
- Tagging with complex nuclei $A>2$
- isospin dependence, universality of bound nucleon structure
- A - 1 ground state recoil

■ Resolved final states: SIDIS on neutron, hard exclusive channels

R\&D project at JLAB

- Develop simulation tools (physics models, event generators, analysis tools) for DIS on light ions with spectator tagging at MEIC and study physics impact.
- ran FY14-15
D. Higinbotham, W. Melnitchouk, P. Nadel-Turonski, K. Park, C. Weiss (JLab), Ch. Hyde (ODU), M. Sargsian (FIU), V. Guzey (PNPI), with collaborators W. Cosyn (Ghent), S. Kuhn (ODU), M. Strikman (PSU), Zh. Zhao (JLab)
■ Tools, documentation, results publicly available. Open for collaboration!
- More info:
https://www.jlab.org/theory/tag/
arXiv:1407.3236, arXiv:1409.5768v1, arXiv:1601.066665, arXiv:1609.01970

Inclusive DIS Xsection on pol. spin 1 with unpol. beam

$$
\begin{aligned}
\frac{d \sigma}{d x d Q^{2}}=\frac{\pi y^{2} \alpha^{2}}{Q^{4}(1-\epsilon)}[& F_{U U, T}+\epsilon F_{U U, L}+T_{L L}\left(F_{U T_{L L}, T}+\epsilon F_{U T_{L L}, L}\right) \\
& \left.+T_{L \perp} \cos \phi_{T_{L}} \sqrt{2 \epsilon(1+\epsilon)} F_{U T_{L T}}^{\cos \phi T_{L}}+T_{\perp \perp} \cos \left(2 \phi_{T_{\perp}}\right) \epsilon F_{U T_{T T}}^{\cos \left(2 \phi_{T_{\perp}}\right)}\right]
\end{aligned}
$$

- 4 tensor polarized structures can be related to the b_{1-4} introduced by Hoodbhoy, Jaffe, Manohar [Nucl. Phys. B 312]
$F_{U T_{L L}, T}=-\frac{1}{x} \sqrt{\frac{2}{3}}\left[2\left(1+\nu^{2}\right) \times b_{1}-\nu^{2}\left(\frac{1}{6} b_{2}-\frac{1}{2} b_{3}\right)\right]$
■ Alternative set of b_{1-3}, Δ by Edelmann Piller Weise [Z. Phys. A 357]. Two sets are equal only in the scaling limit!
- In the parton model: distribution of unpol. quarks in pol. hadron $b_{1}=\frac{1}{2} \sum_{q} e_{q}^{2}\left(q^{0}-q^{1}\right)$
- Obey Callan-Gross like relation in the scaling limit $2 x b_{1}(x)=b_{2}(x)$
- Obeys Kumano-Close sum rule for valence quarks $\int d x b_{1}(x)=0$ [PRD42, 2377]

b_{1} for the deuteron

- Interplay of nuclear and quark degrees of freedom.

$$
b_{1}=\frac{1}{2} \sum_{q} e_{q}^{2}\left(q^{0}-q^{1}\right)
$$

Fig. from K. Slifer

■ np-component: b_{1} is only non-zero due to the D-wave admixture in the deuteron, small.

■ Measured @ Hermes [PRL95, 242001], not small + sign change. No agreement with conventional deuteron models.

- Upcoming measurements at JLab12 for $x<1$ (DIS) and $x>1$ (QE) [arXiv:1311.4835]

Conventional calculations for deuteron b_{1}

- Important to provide an accurate calculation of deuteron b_{1} in a conventional nuclear model to constrain possible exotic mechanisms
■ Consider np component, convolution approach [unpol. nucleon structure \otimes tensor pol. deuteron momentum distribution]
- Only one (?) published Khan, Hoodbhoy [PRC44, 1219]

FIG. 2. $b_{1}^{D}(x)$ (solid curve), the $s-d$ contribution to $b_{1}^{D}(x)$ (dashed curve), and the d - d contribution to $b_{1}^{D}(x)$ (dot-dashed curve).

- Updated check in two similar models: one standard convolution model with instant form deuteron wave function, one in the virtual nucleon approximation with light-front deuteron wf [W.C., Y. Dong, S. Kumano, M. Sargsian, PRD95(074036) '17]

Comparison between two models

MSTW08 nucleon pdfs, CDBonn deuteron wf, SLAC $R=F_{L} / F_{T}$

- Differences with Khan, Hoodbhoy calculation
- different sign SD term
- non-zero distribution at $x>1$

■ Significant nuclear higher-twist effects at low Q^{2}

- DD-term is not small (given $\sim 5 \% D$-wave admixture)

Comparison with Hermes data

MSTW08
SLAC (Bodek, Ricci)

■ Clear mismatch between data and calculations in size

- Future JLab12 data should shed more light
- Possible contribution from exotic mechanism \rightarrow Miller [PRC89, 045203] hidden color + pions
- Higher twist effects?

How was b_{1} extracted?

- Experimental measured asymmetry $\left[\theta_{q}\right.$ is angle between momentum transfer and polarization axis]

$$
\begin{aligned}
& A_{z z}=\frac{2 \sigma^{+}-2 \sigma^{\circ}}{2 \sigma^{+}+\sigma^{\circ}}=\frac{\sqrt{2}}{4 \sqrt{3}\left(F_{U U, T}+\epsilon F_{U U, L}\right)}\left\{\left[1+3 \cos 2 \theta_{q}\right]\left(F_{U T_{L L}, T}+\epsilon F_{U T_{L L}, L}\right)+\right. \\
& \left.3 \sin 2 \theta_{q} \sqrt{2 \epsilon(1+\epsilon)} F_{U T_{L T} T}^{\cos \phi}+3\left[1-\cos 2 \theta_{q}\right] \epsilon F_{U T_{T T}}^{\cos 2 \phi T_{\perp}}\right\},
\end{aligned}
$$

- Only when $\theta_{q}=0$ and scaling relations applied, higher twist $b_{3,4}$ neglected, we have

$$
A_{z z} \rightarrow \sqrt{\frac{2}{3}} \frac{F_{U T_{L L}, T}}{F_{U U, T}} \rightarrow-\frac{2}{3} \frac{b_{1}}{F_{1}}
$$

- Q^{2}-range of Hermes experiment quite low values: $0.5-5 \mathrm{GeV}^{2}$
- We can directly compute $A_{z z}$: still way smaller than the Hermes data

Transversity GPDs for spin 1 hadrons

- GPDs: FT of off-forward matrix elements of quark or gluon correlators Talk M. Hattawy
- Transversity (chiral odd) GPDs for spin 1/2 hadron M. Diehl, EPJC19, 485 (2001)
- Chiral even GPDs for spin 1 Berger, Cano, Diehl, Pire, PRL87 142302 (2001)
- Motivated by recent ed $\rightarrow e d \pi^{0}$ JLAB Hall A data Mazouz et al, 1702.00835

■ Phenomenology linking pion deep exclusive electroproduction data on the proton with transversity GPDs \otimes higher twist pion DA [Goloskokov \& Kroll, Liuti \& Goldstein]

- First step: writing down the transversity GPDs for spin 1, determine their properties and study in basic convolution model

Properties of spin 1 transversity GPDs

- Both for the quark and gluon sector there are 9 transversity GPDs

$$
\begin{aligned}
\int & \frac{d \kappa}{2 \pi} e^{2 i x \kappa(P n)}\left\langle p^{\prime} \lambda^{\prime}\right| \bar{\psi}(-\kappa n)\left(i n_{\mu} \sigma^{\prime i}\right) \psi(\kappa n)|p \lambda\rangle=M \frac{\left(\epsilon^{\prime *} n\right) \epsilon^{i}-\epsilon^{\prime * i}(\epsilon n)}{2 \sqrt{2}(P n)} H_{1}^{T}(x, \xi, t) \\
& +M\left[\frac{2 P^{i}(\epsilon n)\left(\epsilon^{\prime *} n\right)}{2 \sqrt{2}(P n)^{2}}-\frac{(\epsilon n) \epsilon^{\prime \prime *}+\epsilon^{i}\left(\epsilon^{\prime *} n\right)}{2 \sqrt{2}(P n)}\right] H_{2}^{T}(x, \xi, t) \\
& +\frac{\left(\Delta^{i}+2 \xi P^{i}\right)}{M} \frac{(\epsilon n)\left(\epsilon^{\prime *} P\right)-\left(\epsilon^{\prime *} n\right)(\epsilon P)}{(P n)} H_{3}^{T}(x, \xi, t) \\
& +\frac{\left(\Delta^{i}+2 \xi P^{i}\right)}{M} \frac{(\epsilon n)\left(\epsilon^{\prime *} P\right)+\left(\epsilon^{\prime *} n\right)(\epsilon P)}{(P n)} H_{4}^{T}(x, \xi, t)+\left(\Delta^{i}+2 \xi P^{i}\right) M \frac{\left(\epsilon^{\prime *} n\right)(\epsilon n)}{(P n)^{2}} H_{5}^{T}(x, \xi, t) \\
& +\frac{\left(\Delta^{i}+2 \xi P^{i}\right)}{M}\left(\epsilon^{\prime *} \epsilon\right) H_{6}^{T}(x, \xi, t)+\frac{\left(\Delta^{i}+2 \xi P^{i}\right)}{M} \frac{\left(\epsilon^{\prime *} P\right)(\epsilon P)}{M^{2}} H_{7}^{T}(x, \xi, t) \\
& +\left[\frac{\left(\epsilon^{\prime *} n\right) P^{i}-\epsilon^{\prime * *}(P n)}{M(P n)}(\epsilon P)+\frac{(\epsilon n) P^{i}-\epsilon^{i}(P n)}{M(P n)}\left(\epsilon^{\prime *} P\right)\right] H_{8}^{T}(x, \xi, t) \\
& +\left[\frac{\left(\epsilon^{\prime *} n\right) P^{i}-\epsilon^{\prime \prime *}(P n)}{M(P n)}(\epsilon P)-\frac{(\epsilon n) P^{i}-\epsilon^{i}(P n)}{M(P n)}\left(\epsilon^{\prime *} P\right)\right] H_{9}^{T}(x, \xi, t) .
\end{aligned}
$$

Properties of spin 1 transversity GPDs

- Both for the quark and gluon sector there are 9 transversity GPDs
- Complex conjugation and P, T symmetries
\rightarrow all are real, even/oddness in ξ
- Forward limit gives connections with collinear pdfs
- $H_{q 1}^{\top}(x, 0,0)=h_{1}(x)$,
- $H_{g 5}^{\top}(x, 0,0)=x \Delta(x)$ [Talk P. Shanaghan]
- Sum rules for first moments, several are zero due to Lorentz invariance.
- General moments can be connected with generalized form factors [in progress]
- Can be linked to 9 helicity amplitudes $\mathcal{A}_{\lambda^{\prime}+; \lambda-}$ through linear set of equations

Deuteron chiral odd quark GPDs: convolution calculation

■ Same approach as Cano, Pire, EPJA19 ('04) 423-438
Only difference: tensor current instead of (axial) vector

- Deuteron helicity amplitudes written as convolution of nucleon chiral odd helicity amplitudes \otimes deuteron LF wave function
■ Nucleon chiral odd helicity amplitudes \rightarrow nucleon transversity GPDs [parametrization based on Goloskokov, Kroll, EPJA47 112 ('11)]
- Deuteron helicity amplitudes \rightarrow GPDs $H_{q 1}^{T}-H_{q 9}^{T}$

Deuteron hel. amplitudes: $\xi=0.1, t=-0.25 \mathrm{CeV}^{2}$

Deuteron transv. quark GPDs: $\xi=0.1, t=-0.25 \mathrm{GeV}^{2}$

Deuteron hel. amplitudes: t-dep, $\xi=0.1$

Deuteron transv. quark GPDs: ξ-dep, $t=-0.4 \mathrm{GeV}^{2}$

Sum rules: first moments

- First moments should be independent of द
- Dashed curves should have zero sum rules
- Limitations of convolution picture?

■ strong ξ dependence of $H_{3}^{T}, H_{4}^{T}, H_{5}^{T}$

- understood in minimal convolution model (no D-wave, no coordinate wf), ξ terms come with $M^{2} /\left(t-t_{0}\right)$ enhancement

Conclusions

- General form of SIDIS with a spin 1 target, 23 tensor polarized structure functions unique to spin 1
- Results for the impulse approximation using deuteron light-front structure, relativistic nuclear spin effects contribute.
- FSI/shadowing effects calculable
- Spectator tagging in eD scattering with EIC enables next-generation measurements with maximal control and unprecedented accuracy
- Neutron structure functions, including spin
- Nuclear modifications of quark/gluon structure
- Update of convolution calculation for deuteron b_{1} Does not match Hermes data
- Deuteron chiral odd quark GPDs in convolution picture

Backup Slides

Unpolarized structure function

- Extrapolation for $\left(m_{N}^{2}-t\right) \rightarrow 0$ corresponds to on-shell neutron $F_{2 N}\left(x, Q^{2}\right)$, here equivalent to imaginary p_{s}
- Clear effect of deuteron D-wave, largest in the region dominated by the tensor part of the NN-interaction
- D-wave drops out at the on-shell point

Tagging: free neutron structure

JLab LDRD arXiv:1407.3236, arXiv:1409.5768,
C. Hyde talk

- $F_{2 n}$ extracted with percent-level accuracy at $x<0.1$
- Uncertainty mainly systematic due to intrinsic momentum spread in beam (JLab LDRD project: detailed estimates)
- In combination with proton data non-singlet $F_{2 p}-F_{2 n}$, sea quark flavor asymmetry $\bar{d}-\bar{u}$

JLEIC: Momentum spread in beam

ion $\delta p_{D}, \delta \theta$

Smearing effect in transverse momentum distribution

- Intrinsic beam spread in ion beam "smears" recoil momentum
- transverse momentum spread of $\sigma \approx 20 \mathrm{MeV}(\delta \sigma / \sigma \sim 10 \%)$
- p_{R} (measured) $\neq p_{R}$ (vertex)
- Systematic correlated uncertainty, x, Q^{2} independent
- Dominant syst. uncertainty at JLEIC, detector resolution much higher than beam momentum spread (diff for eRHIC)
- On-shell extrapolation feasible!!
[Ch. Hyde, K. Park et al.]

