Fitting nPDFs:

strategies and results

P. Zurita

Brookhaven National Laboratory

Exposing Novel Quark and Gluon Effects in Nuclei April 16-20, ECT*, Trento, Italy

Outline

- Generalities: what? why? how? who?
- Fitting (n)PDFs is easy!
- What could possibly be different?
- Comparing nPDFs
- What's next?
- Summary
- To come...
- What?

Determine how partons behave in a proton/neutron bounded in a nucleus (in the collinear picture)

- What?

Determine how partons behave in a proton/neutron bounded in a nucleus (in the collinear picture)

- Why?

Because it is a fact of Nature that partons in nuclei do not behave as in the free proton

- What?

Determine how partons behave in a proton/neutron bounded in a nucleus (in the collinear picture)

- Why?

Because it is a fact of Nature that partons in nuclei do not behave as in the free proton

- How?

Through global fits to the world data*

$$
f_{i}^{A}\left(x, Q^{2}\right)=\frac{Z f_{i}^{p / A}\left(x, Q^{2}\right)+(A-Z) f_{i}^{n / A}\left(x, Q^{2}\right)}{A}
$$

*results usually shown as the ratio of the nuclear to proton PDF.

- Who?
+ HKM: Hirai, Kumano, Miyama, PRD64 (2001) 034003
+ nDS: de Florian, Sassot, PRD69 (2004) 074028
+ HKN: Hirai, Kumano, Nagai, PRC76 (2007) 065207
+ EPS09: Eskola, Paukkunen, Salgado, JHEP 0904 (2009) 065
+ DSSZ: de Florian, Sassot, Stratmann, PZ, PRD85 (2012) 074028
+ nCTEQ15: Kovarik et al., PRD93 (2016) no.8, 085037
+ EPPS16: Eskola, Paakkinen, Paukkunen, Salgado, EPJ C77 (2017) no.3, 163
+ KA15: Khanpour, Tehrani, PRD93 (2016) no.1, 014026

Fitting (n)PDFs is easy!

(1) Select the data
(2) Write the (n)PDFs at some initial scale (Q_{0}) in terms of free parameters
(3) Give values to the parameters
(4) Determine the distributions at the experimental scales (Q) using the DGLAP evolution equations
(5) Write the theoretical predictions using (4)
(6) Use (1)+(5) to construct a quantity that estimates the "goodness" of the description
(7) if (6) not "good enough" then
goto (3)
else
print(*,*) "we have the best fit!"
end if
(8) Determine how much one can move the parameters without spoiling (6)
(9) Take the parameters of (7)+(8) and generate grids for public use

What could possibly be different?

What could possibly be different?

the analyses can be affected by the experiments, the theory and the phenomenology

What could possibly be different?: the data

(1) the available data and how we choose it

for proton PDFs: ~3500 data points*

* average of all major current PDFs analyses

NNPDF3.0 NLO dataset

Ball et al., JHEP 1504 (2015) 040

What could possibly be different?: the data

e+A and p(d)+A experiments ~ 1400 data points*

* average of newest nPDFs analyses

A	D	He	Li	Be	C	N	Al	Ca	Fe	Cu	Kr	Ag	Sn	Xe	W	Pt	Au	Pb
\# points	82	35	93	31	148	32	34	73	141	17	26	6	151	1	33	1	39	180

What could possibly be different?: the data

- NC DIS: $\quad \sigma_{\text {red }}^{\mathrm{A}} / \sigma_{\text {red }}^{\mathrm{D}}, \mathrm{F}_{2}^{\mathrm{A}} / F_{2}^{\mathrm{D}}, \mathrm{f}\left(\mathrm{F}_{\mathrm{L}}^{\mathrm{A}} / F_{2}^{\mathrm{A}}\right)$

$$
\sigma_{\text {red }}=F_{2}-\frac{\mathrm{y}^{2}}{1+(1-\mathrm{y})^{2}} \mathrm{~F}_{\mathrm{L}}
$$

New Muon Collaboration, Nucl.Phys. B481 (1996) 3

+ information lost when taking ratios
+ little sensitivity to gluons
- F_{2} and FL determination based on parameterizations of their ratio
+ non-isoscalarity corrections

What could possibly be different?: the data

- Drell-Yan

D.M. Alde, et al., Phys.Rev.Lett. 64 (1990) 2479

- some constraint on the sea
- LO/NLO very similar

- Drell-Yan

D.M. Alde, et al., Phys.Rev.Lett. 64 (1990) 2479

- some constraint on the sea
+ LO/NLO very similar

LO: Eskola, Kolhinen, Salgado, Eur.Phys.J. C9 (1999)

NLO: EPJ C77 (2017) no.3, 163

What could possibly be different?: the data

- Hadron production in dAu

+ sensitive to the gluon density
+ big uncertainties
+ final state effects?

What could possibly be different?: the data

-CC DIS

+ no proton reference
- normalization uncertainties
- tensions between data sets

What could possibly be different?: the data

- CC DIS

+ no proton reference
+ normalization uncertainties
+ tensions between data sets
EPJ C77 (2017) no.3, 163

- LHC (new!): di-jets and EW bosons

EPJ C77 (2017) no.3, 163

- little impact from EW bosons due to the high Q2
- gluon sensitive at high x (di-jets)

What could possibly be different?: the data

We get to pick!

+ ratios, structure functions, cross-sections?
+ DIS, DY, jets, hadrons
- kinematical cuts
+ remove or not the corrections for non-isoscalarity

(2) the parameterization

- choose a proton PDF as reference and (try to!) be consistent
+ select Qo accordingly (see(4))
+ treat the heavy quarks accordingly
- kinematical cuts not always accordingly

(2) the parameterization

- choose a proton PDF as reference and (try to!) be consistent
+ select Qo accordingly (see(4))
+ treat the heavy quarks accordingly
- kinematical cuts not always accordingly
- somehow include the nuclear dependence (limit for $\mathrm{A}=1$?)
- $\quad f_{i / A}\left(x, Q_{0}^{2}\right) \equiv f_{i / p}\left(x, Q_{0}^{2}\right) R_{i}^{A}\left(x, Q_{0}^{2}\right)$

HKM, HKN, EPS09, EPPS16, DSSZ, KA15

- $\quad f_{i / A}\left(x, Q_{0}^{2}\right) \equiv \int_{x}^{A} \frac{d y}{y} W_{i}^{A}\left(y, Q_{0}^{2}\right) f_{i}^{p}\left(\frac{x}{y}, Q_{0}^{2}\right)$
nDS
- directly parameterize the nPDF

What could possibly be different?: the parameterization

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{i} / \mathrm{A}}\left(\mathrm{x}, \mathrm{Q}_{0}^{2}\right) \equiv \mathrm{f}_{\mathrm{i} / \mathrm{p}}\left(\mathrm{x}, \mathrm{Q}_{0}^{2}\right) \mathrm{R}_{\mathrm{i}}^{\mathrm{A}}\left(\mathrm{x}, \mathrm{Q}_{0}^{2}\right) \\
& R_{i}^{A}\left(x, Q_{0}^{2}\right)=\left\{\begin{array}{l}
a_{0}+a_{1}\left(x-x_{a}\right)^{2} \\
b_{0}+b_{1} x^{\alpha}+b_{2} x^{2 \alpha}+b_{3} x^{3 \alpha} \\
c_{0}+\left(c_{1}-c_{2} x\right)(1-x)^{-\beta}
\end{array}\right. \\
& y_{i}(A)=y_{i}\left(A_{\text {ref }}\right)\left(\frac{A}{A_{\text {ref }}}\right)^{\left.r_{i\left(y_{i}\right.}\left(A_{\text {ef }}\right)-1\right]} \\
& R_{\text {valence }} \\
& \mathrm{R}_{\text {sea }} \\
& \mathrm{R}_{\text {gluon }} \\
& \text { EPPS16 } \\
& R_{u_{v}}, R_{d_{v}} \\
& R_{\bar{u}}, R_{\bar{d}}, R_{s} \\
& \mathrm{R}_{\text {gluon }}
\end{aligned}
$$

What could possibly be different?: the parameterization
$\mathrm{f}_{\mathrm{i} / \mathrm{A}}\left(\mathrm{x}, \mathrm{Q}_{0}^{2}\right) \equiv \mathrm{f}_{\mathrm{i} / \mathrm{p}}\left(\mathrm{x}, \mathrm{Q}_{0}^{2}\right) \mathrm{R}_{\mathrm{i}}^{\mathrm{A}}\left(\mathrm{x}, \mathrm{Q}_{0}^{2}\right)$

HKM, HKN, DSSZ, KA15

$R_{i}^{H K M}(x, A, Z)=1+\left(1-\frac{1}{A^{1 / 3}}\right) \frac{a_{i}(A, Z)+b_{i} x+c_{i} x^{2}+d_{i} x^{3}}{(1-x)^{\beta_{i}}}$
$i=u_{v}, d_{v}, \bar{q}, g$
${ }^{*} R_{i}^{H K N}(x, A, Z)=1+\left(1-\frac{1}{A^{\alpha}}\right) \frac{a_{i}+b_{i} x+c_{i} x^{2}+d_{i} x^{3}}{(1-x)^{\beta_{i}}}$

* also for KA15
$R_{v}^{D S S Z}\left(x, Q_{0}^{2}\right)=\varepsilon_{1} x^{a_{a}}(1-x)^{\beta_{1}}\left[1+\varepsilon_{2}(1-x)^{\beta_{2}}\right]\left[1+a_{v}(1-x)^{\beta_{3}}\right]$
$R_{i}^{D S S Z}\left(x, Q_{0}^{2}\right)=R_{v}^{D S S Z}\left(x, Q_{0}^{2}\right) \frac{\varepsilon_{i}}{\varepsilon_{1}} \frac{1+a_{i} x^{a_{i}}}{1+a_{i}}$
$\mathrm{i}=$ sea, g
nDS

$$
f_{i / A}\left(x, Q_{0}^{2}\right) \equiv \int_{x}^{A} \frac{d y}{y} W_{i}^{A}\left(y, Q_{0}^{2}\right) f_{i}^{p}\left(\frac{x}{y}, Q_{0}^{2}\right)
$$

allows to study the $1<x<$ A region

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{v}}(\mathrm{y}, \mathrm{~A}, \mathrm{Z})= \mathrm{A}\left[\mathrm{a}_{\mathrm{v}} \delta\left(1-\varepsilon_{\mathrm{v}}-\mathrm{y}\right)+\left(1-\mathrm{a}_{\mathrm{v}}\right) \delta\left(1-\varepsilon_{\mathrm{v}^{\prime}}-\mathrm{y}\right)\right] \\
&+\mathrm{n}_{\mathrm{v}}\left(\frac{\mathrm{y}}{\mathrm{~A}}\right)^{a_{\mathrm{v}}}\left(1-\frac{\mathrm{y}}{\mathrm{~A}}\right)^{\beta_{\mathrm{v}}}+\mathrm{n}_{\mathrm{s}}\left(\frac{\mathrm{y}}{\mathrm{~A}}\right)^{a_{\mathrm{s}}}\left(1-\frac{\mathrm{y}}{\mathrm{~A}}\right)^{\beta_{\mathrm{s}}} \\
& \mathrm{~W}_{\mathrm{i}}(\mathrm{y}, \mathrm{~A}, \mathrm{Z})=\mathrm{A} \delta(1-\mathrm{y})+\frac{\mathrm{a}_{\mathrm{i}}}{\mathrm{~N}_{\mathrm{i}}}\left(\frac{\mathrm{y}}{\mathrm{~A}}\right)^{a_{\mathrm{s}}}\left(1-\frac{\mathrm{y}}{\mathrm{~A}}\right)^{\beta_{\mathrm{s}}} \quad \mathrm{i} \text { = sea, gluon }
\end{aligned}
$$

nCTEQ15

direct parameterization of the nPDF

$$
\begin{aligned}
x f_{i / A}\left(x, Q_{0}^{2}\right) & =c_{0} x^{c_{1}}(1-x)^{c_{2}} e^{c_{3} x}\left(1+e^{c_{4}} x\right)^{c_{5}} \\
\frac{\bar{d}\left(x, Q_{0}^{2}\right)}{\bar{u}\left(x, Q_{0}^{2}\right)} & =c_{0} x^{c_{1}}(1-x)^{c_{2}}+\left(1+c_{3} x\right)(1-x)^{c_{4}}
\end{aligned}
$$

recovers the free proton case for $A=1$

(4) scale evolution using DGLAP

$$
\begin{aligned}
& \frac{d q^{N S}\left(x, Q^{2}\right)}{d \ln \left(Q^{2}\right)}=\frac{a_{s}\left(Q^{2}\right)}{4 \pi} \int_{x}^{1} \frac{d y}{y} P_{q q}(y) q^{N S}\left(\frac{x}{y}, Q^{2}\right) \\
& \frac{d q^{S}\left(x, Q^{2}\right)}{d \ln \left(Q^{2}\right)}=\frac{a_{s}\left(Q^{2}\right)}{4 \pi} \int_{x}^{1} \frac{d y}{y}\left[P_{q q}(y) q^{s}\left(\frac{x}{y}, Q^{2}\right)+P_{q g}(y) g\left(\frac{x}{y}, Q^{2}\right)\right] \\
& \frac{d g\left(x, Q^{2}\right)}{d \ln \left(Q^{2}\right)}=\frac{a_{s}\left(Q^{2}\right)}{4 \pi} \int_{x}^{1} \frac{d y}{y}\left[P_{g q}(y) q^{S}\left(\frac{x}{y}, Q^{2}\right)+P_{g g}(y) g\left(\frac{x}{y}, Q^{2}\right)\right]
\end{aligned}
$$

+ No exact solution, numerical strategies implemented
- Nf dependent, so one must be careful with heavy quarks
+ Initial scale to be chosen

(5) theoretical predictions

- choose perturbative order: LO, NLO, NNLO, ...
- understand clearly what it means in terms of the coupling constant
- how do we treat the heavy-quarks?
+ FFNS
+ ZM-VFNS
+ GM-VFNS: TR', ACOT, SACOT, FONLL, ...?
- nuclear effects in the deuteron?
- final state effects for hadrons?

(6) X^{2}

$$
\chi^{2}(\mathbf{a})=\sum_{\mathrm{i}, \mathrm{j}}\left[\mathrm{~T}_{\mathrm{i}}(\mathbf{a})-\mathrm{E}_{\mathrm{i}}\right] \mathrm{C}_{\mathrm{i}, \mathrm{j}}^{-1}\left[\mathrm{~T}_{\mathrm{j}}(\mathbf{a})-\mathrm{E}_{\mathrm{j}}\right]
$$

a : parameters
$\mathrm{T}_{\mathrm{i}}(\mathbf{a})$: theoretical value of datapoint "i"
$\mathrm{E}_{\mathrm{i}} \quad$: experimental value of datapoint " i "
$\mathrm{C}_{\mathrm{i}, \mathrm{j}}$: covariance matrix

> if not know
> $\chi^{2}(\mathbf{a})=\sum_{i}\left[\frac{T_{i}(\mathbf{a})-f_{N} E_{i}}{\delta_{i}^{\text {uncorr. }}}\right]^{2}+\left(\frac{1-f_{N}}{\delta^{\text {norm }}}\right)^{2}$

(7) the fit

+ average number of parameters: ~ 20
+ multiple local minima, very hard to find the absolute minimum
- little sensitivity of data sets to certain nPDFs
- Give relevance to some data sets using weights in the X^{2}

What could possibly be different?: uncertainties

(8) the hessian uncertainties

We begin by expanding the around the global minimum

$$
\chi^{2}(\mathbf{a}) \approx \chi_{0}^{2}+\sum_{\mathrm{i}, \mathrm{j}} \delta \mathrm{a}_{\mathrm{i}} \mathrm{H}_{\mathrm{ij}} \delta \mathrm{a}_{\mathrm{j}}
$$

$\delta a_{i} \equiv a_{j}-a_{j}^{0} \quad$ deviation from best fit value of the parameter

What could possibly be different?: uncertainties

(8) the hessian uncertainties

We begin by expanding the around the global minimum

$$
\chi^{2}(\mathbf{a}) \approx \chi_{0}^{2}+\sum_{\mathrm{i}, \mathrm{j}} \delta \mathrm{a}_{\mathrm{i}} \mathrm{H}_{\mathrm{ij}} \delta \mathrm{a}_{\mathrm{j}}
$$

$\delta a_{i} \equiv a_{j}-a_{j}^{0} \quad$ deviation from best fit value of the parameter
Diagonalize the Hessian matrix: $\quad \mathrm{D}_{\mathrm{kj}} \equiv \sqrt{\varepsilon_{\mathrm{k}}} \mathrm{v}_{\mathrm{j}}^{(\mathrm{k})}$

(8) the hessian uncertainties

We begin by expanding the around the global minimum

$$
\chi^{2}(\mathbf{a}) \approx \chi_{0}^{2}+\sum_{\mathrm{i}, \mathrm{j}} \delta \mathrm{a}_{\mathrm{i}} \mathrm{H}_{\mathrm{ij}} \delta \mathrm{a}_{\mathrm{j}}
$$

$\delta a_{i} \equiv a_{j}-a_{j}^{0} \quad$ deviation from best fit value of the parameter
Diagonalize the Hessian matrix: $\quad \mathrm{D}_{\mathrm{kj}} \equiv \sqrt{\varepsilon_{\mathrm{k}}} \mathrm{v}_{\mathrm{j}}^{(\mathrm{k})}$

Define new parameters: $\quad \mathrm{z}_{\mathrm{k}} \equiv \sum_{\mathrm{j}} \mathrm{D}_{\mathrm{kj}} \delta \mathrm{a}_{\mathrm{j}}$

What could possibly be different?: uncertainties
Now in the new parameter space

$$
\chi^{2}(\mathbf{a}) \approx \chi_{0}^{2}+\sum_{i} z_{i}^{2}
$$

What could possibly be different?: uncertainties
Now in the new parameter space

$$
\chi^{2}(\mathbf{a}) \approx \chi_{0}^{2}+\sum_{i} z_{i}^{2}
$$

Then for any PDF dependent quantity the uncertainty can be obtained by

$$
\Delta \mathcal{O}=\sqrt{\sum_{i}\left(\Delta z_{i}\right)^{2}\left(\frac{\partial \mathcal{O}}{\partial z_{i}}\right)^{2}}
$$

$$
\Delta \mathrm{z}_{\mathrm{i}}=\frac{\mathrm{t}_{\mathrm{i}}^{+}+\mathrm{t}_{\mathrm{i}}^{-}}{2}
$$

What could possibly be different?: uncertainties
Now in the new parameter space

$$
\chi^{2}(\mathbf{a}) \approx \chi_{0}^{2}+\sum_{i} z_{i}^{2}
$$

Then for any PDF dependent quantity the uncertainty can be obtained by

$$
\Delta \mathcal{O}=\sqrt{\sum_{i}\left(\Delta z_{i}\right)^{2}\left(\frac{\partial \mathcal{O}}{\partial z_{i}}\right)^{2}}
$$

$$
\Delta \mathrm{z}_{\mathrm{i}}=\frac{\mathrm{t}_{\mathrm{i}}^{+}+\mathrm{t}_{\mathrm{i}}^{-}}{2}
$$

Defining the PDFs error sets $\mathrm{S}_{\mathrm{i}}^{ \pm}$

$$
\begin{aligned}
& z\left(S_{i}^{ \pm}\right)= \pm t_{i}^{ \pm}(0, \ldots, i, \ldots 0) \quad i=1, \ldots, N_{\text {param }} \\
& \Delta \mathcal{O}=\frac{1}{2} \sqrt{\sum_{i}\left[\mathcal{O}\left(S_{i}^{+}\right)-\mathcal{O}\left(S_{i}^{-}\right)\right]^{2}}
\end{aligned}
$$

More information in:

- J. Pumplin, D. Stump, and W. Tung, Phys.Rev. D65 (2001) 014011.
- J. Pumplin, D. Stump, R. Brock, D. Casey, J. Huston, Phys.Rev. D65 (2001).

What could possibly be different?: uncertainties
Now in the new parameter space

$$
\chi^{2}(\mathbf{a}) \approx \chi_{0}^{2}+\sum_{i} z_{i}^{2}
$$

Then for any PDF dependent quantity the uncertainty can be obtained by

$$
\Delta \mathcal{O}=\sqrt{\sum_{i}\left(\Delta z_{i}\right)^{2}\left(\frac{\partial \mathcal{O}}{\partial z_{i}}\right)^{2}}
$$

Defining the PDFs error sets $\mathrm{S}_{\mathrm{i}}^{ \pm}$

$$
\Delta z_{i}=\frac{t_{i}^{+}+t_{i}^{-}}{2}
$$

we get a choice!

$$
\begin{aligned}
& z\left(S_{i}^{ \pm}\right)= \pm t_{i}^{ \pm}(0, \ldots, i, \ldots 0) \quad i=1, \ldots, N_{\text {param }} \\
& \Delta \mathcal{O}=\frac{1}{2} \sqrt{\sum_{i}\left[\mathcal{O}\left(S_{i}^{+}\right)-\mathcal{O}\left(S_{i}^{-}\right)\right]^{2}}
\end{aligned}
$$

More information in:

- J. Pumplin, D. Stump, and W. Tung, Phys.Rev. D65 (2001) 014011.
- J. Pumplin, D. Stump, R. Brock, D. Casey, J. Huston, Phys.Rev. D65 (2001).

Comparing nPDFs

Comparing nuclear PDFs

SET		HKM	nDS	HKN	EPS09	DSSZ	nCTEQ15	KA15	EPPS16
d	e-DIS	yes							
a	D-Y	no	yes						
a	pions	no	no	no	yes	yes	yes	no	yes
$\begin{aligned} & \mathrm{t} \\ & \mathrm{y} \\ & \mathrm{p} \\ & \mathrm{e} \end{aligned}$	v-DIS	no	no	no	no	yes	no	no	yes
	EW	no	yes						
	jets	no	yes						
\# data points		309	420	1241	929	1579	740	1479	1811
χ^{2}		565	300	1486	731	1545	587	1696	1789
$\mathrm{Q}_{0}{ }^{2}\left(\mathrm{GeV}^{2}\right)$		1	0.4	1	1.69	1	1.69	2	1.69
accuracy		LO	NLO	NLO	NLO	NLO	NLO	NNLO	NLO
proton PDF		MRST2001	GRV	MRST98	CTEQ6.1M	MSTW2008	CTEQ6. 1	JR09	CT14NLO
deuteron		no/yes	no	yes	no	no	yes/no	?	no
flavour separation?		valence	no	no	no	no	valence	no	yes

Comparing nPDFs: the valence

Comparing nPDFs: the valence

EPJ C77 (2017) no.3, 163

proton
nucleus
$\frac{4}{9} u+\frac{1}{9} d$
$\left(\frac{A+3 Z}{9 A}\right) u+\left(\frac{4 A-3 Z}{9 A}\right) d$

Comparing nPDFs: the valence

Comparing nPDFs: the sea
$\overline{\mathbf{u}}$
\bar{S}

Comparing nPDFs: the sea

Comparing nPDFs: the sea

EPJ C77 (2017) no.3, 163

Comparing nPDFs: the sea

Comparing nPDFs: the gluon

Comparing nPDFs: the gluon

PRD85 (2012) 074028

Comparing nPDFs: the gluon

Comparing nPDFs: the gluon

PRD93 (2016) no.1, 014026

possibilities at an EIC

For energy dependent studies check:

- EPJ A52 (2016) no.9, 268
- Aschenauer, Fazio, Lee, Mantysaari, Page, Schenke, Ullrich, Venugopalan, P.Z. , arXiv:1708.01527

- observables: reduced cross-section

- pseudo-data using CT10 NLO proton PDFs + EPS09 nPDFs

Aschenauer, Fazio, Lamont, Paukkunen, PZ, PRD96 (2017) no.11, 114005

- observables: reduced cross-section

- pseudo-data using CT10 NLO proton PDFs + EPS09 nPDFs

Aschenauer, Fazio, Lamont, Paukkunen, PZ, PRD96 (2017) no.11, 114005

What's next?: EIC studies

- check impact on EPPS16* nPDFs: inclusive, low energy

PRD96 (2017) no.11, 114005

- check impact on EPPS16* nPDFs: charm, low energy

PRD96 (2017) no.11, 114005

See also C. Weiss talk at "Santa Fe Jets and Heavy Flavor Workshop, 30-Jan-18"
https://indico.fnal.gov/event/15328/session/4/contribution/15/material/slides/0.pdf

What's next?: EIC studies

- check impact on EPPS16* nPDFs: inclusive, high energy

PRD96 (2017) no.11, 114005

What's next?: EIC studies

- check impact on EPPS16* nPDFs: charm, high energy

PRD96 (2017) no.11, 114005

See also C. Weiss talk at "Santa Fe Jets and Heavy Flavor Workshop, 30-Jan-18"

https://indico.fnal.gov/event/15328/session/4/contribution/15/material/slides/0.pdf

Klasen and Kovarik, arXiv:1803.10985 [hep-ph].

Klasen, Kovarik, Potthoff, PRD95 (2017) no.9, 094013

What's next?: LHeC studies

possibilities at the LHeC

from H. Paukkunen's talk in POETIC8

Ratios of reduced cross-sections

+ "data" from EPS09
+ NC \& CC

from H. Paukkunen's talk in POETIC8

+ Other proposals: fit only for one nucleus

Summary

- several nPDFs sets available, comparing them is tricky
all give NICE descriptions of the data

Summary

- several nPDFs sets available, comparing them is tricky
- far from the precision of proton PDFs due to the available data
- archaeological discoveries have become useful
- there are also a lot of data yet to be understood
- active work to include other data
- waiting for new results to include!
actual photo of "nPDF fitters" waiting for data (I look amazing!)

- future colliders have a huge potential to help us improve: we make impact studies!
- for DIS at an EIC:
- Iow energy: kinematical range moderately extended, high precision data
- high energy: kinematical range extended, more chances of finding new phenomena
- for charm: win-win situation!
- also FL will help determine the gluon
- future colliders have a huge potential to help us improve: we make impact studies!
- for DIS at an EIC:
- low energy: kinematical range moderately extended, high precision data
- high energy: kinematical range extended, more chances of finding new phenomena
- for charm: win-win situation!
- also FL will help determine the gluon
- for jets and di-jets at an EIC:
- relevant decrease of the gluon uncertainty
- higher energy c.o.m. relevant
- also great possibilities for LHeC
- Many things to do:
- improve FFs so we can use available data
- look for other measurements/observables (be creative!)
- apply more refined techniques in nPDFs extractions
- joint PDFs + nPDFs + FFs + nFFs analysis?
expectation:

- Many things to do:
- improve FFs so we can use available data
- look for other measurements/observables (be creative!)
- apply more refined techniques in nPDFs extractions
- joint PDFs + nPDFs + FFs + nFFs analysis?
reality:

Ongoing \& future work

- nPDFs NNLO in the GM-VFNS: work in progress, P.Z. and C. Andrés Casas
- nPDFs NNLO using x-Fitter: Vogelsang, Helenius et al.
- joint analysis of : Accardi et al. (see his talk at the 2017 EICUG meeting)
- nuclear PDFs from the NNPDF collaboration
- and I'm sure, plenty more to come!

