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Gluons offer a new window on nuclear structure

Gluon structure

Past 60+ years: detailed view  
of quark structure of nucleons

Gluon structure also important
Unpolarised gluon PDF dominant  
at small longitudinal momentum 
fraction

Other aspects of gluon 
structure relatively unexplored

Longitudinal momentum fraction 
carried by parton

Parton distributions in the proton



Gluon structure

Motivation

Phiala Shanahan (MIT) Exotic Glue in the Nucleus September 13, 2016 2 / 15

Electron Ion Collider:
The Next QCD Frontier

Understanding the glue 
that binds us all

Cover image from EIC whitepaper arXiv::1212.1701

First-principles  QCD calculations 
         QCD benchmarks and predictions ahead of experiment



How much do gluons contribute to the proton’s

MassMomentum 
Spin

Gluon Structure from LQCD

TMDs
‘Gluon radius’

1 PDFs
GPDs

What is the 3D gluon distribution of a proton

2
Gluon ‘EMC’ effect

How is the gluon structure of a proton modified  
in a nucleus

Exotic glue



Gluon radii

MIT Bag Model

gluon radius > charge radius

Constituent 
Quark Model

LQCD with  
heavy quarks

gluon radius ~ charge radius

gluon radius < charge radius

How does the gluon radius of a proton compare to 
the quark/charge radius?1

Charge radius:  
slope of electric form factor with 
respect to momentum transfer

Gluon radius:  
slope of gluon form factor with 
respect to momentum transfer



Ratio of structure function F2 per 
nucleon for iron and deuterium 

European Muon 
Collaboration (1983):  
“EMC effect”

Modification of per-nucleon 
cross section of nucleons  
bound in nuclei

Gluon analogue?

Gluon structure of nuclei

How does the gluon 
structure of a nucleon 
change in a nucleus?

2A
F2(x,Q

2) =
X

q=u,d,s...

x e2q [q(x,Q
2) + q(x,Q2)]

Longitudinal momentum fraction

Number density of  
partons of flavour q



Gluon structure of nuclei

      Exotic Glue

Contributions to nuclear 
structure from gluons not 
associated with individual 
nucleons in nucleus  
 
Exotic glue operator:

‘Exotic’ Glue in the Nucleus
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hp|O|pi = 0, hN,Z|O|N,Zi 6= 0

hp|O|pi = 0, hN,Z|O|N,Zi 6= 0

Jaffe and Manohar, “Nuclear Gluonometry”  
Phys. Lett. B223 (1989) 218

2B

nucleon
nucleus



Gluon structure of nuclei

      Exotic Glue

Contributions to nuclear 
structure from gluons not 
associated with individual 
nucleons in nucleus  
 
Exotic glue operator:

‘Exotic’ Glue in the Nucleus
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‘Exotic’ Glue in the Nucleus

‘Exotic’ Glue
Contributions to gluon

observables that are not from

nucleon degrees of freedom.

Exotic glue operator:

operator in nucleon = 0

operator in nucleus 6= 0
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hp|O|pi = 0, hN,Z|O|N,Zi 6= 0

hp|O|pi = 0, hN,Z|O|N,Zi 6= 0

Jaffe and Manohar, “Nuclear Gluonometry”  
Phys. Lett. B223 (1989) 218

2B

nucleon
nucleus



x64

Lattice QCD

t ! i⌧

a

hOi =
1

Z

Z
DAD D O[A,  ]e�S[A,  ]

hOi '
1

Nconf

NconfX

i

O([U i])

Approximate the QCD path integral by Monte Carlo

with field configurations        distributed according toU i e�S[U ]

L3 ⇥ T ⇡ 323 ⇥ 64

Numerical first-principles approach to non-perturbative QCD

Euclidean space-time
•Finite lattice spacing
•Volume
•Boundary conditions
Some calculations use larger- 
than-physical quark masses (cheaper)



Predictions for new states with 
controlled uncertainties

Ground state hadron 
spectrum reproduced

p-n mass splitting 
reproduced

…

Lattice QCD works

29

2000

2500

3000

3500

4000

4500

5000

5500

M
/M

eV
�

n
b
·
30

00

�c

�c

��
c

�c

��
c

��
c

�c

��
c

�b

�b
��

b

�b

��
b

��
b

�b
��

b

�cc

��
cc

�cc

��
cc

�bb
��

bb

�bb
��

bb

�cb ��
cb ��

cb
�cb ��

cb
��

cb

�ccc

�bbb

�ccb
��

ccb

�cbb
��

cbb
Experiment

Lattice QCD (Brown et al., 2014)

FIG. 15. Our results for the masses of charmed and/or bottom baryons, compared to the experimental results where available
[8, 10, 12]. The masses of baryons containing nb bottom quarks have been o↵set by �nb · (3000 MeV) to fit them into this plot.
Note that the uncertainties of our results for nearby states are highly correlated, and hyperfine splittings such as M⌦⇤

b
� M⌦b

can in fact be resolved with much smaller uncertainties than apparent from this figure (see Table XIX).

[Z Brown et al. PRD 2014]

Recently determined 
by LHCb experiment

Science 347:1452-1455,2015



Correlation decays exponentially  
with distance in time: 
 
 
 
At late times: 

Ground state mass revealed  
through “effective mass plot” 
 

Doing lattice QCD

! Z0 exp(�E0t)

all eigenstates with q#’s of proton time

C2(t) =
X

n

Znexp(�Ent)

M(t) = ln


C2(t)

C2(t+ 1)

�
t!1�! E0
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Extraction of A2: 3pt/2pt ratio
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���
���

sink time

operator insertion time

Signal

Zero
Excited  
states

Excited  
states

Calculate matrix elements

Create three quarks (correct 
quantum numbers) at a source 
and annihilate the three quarks 
at sink far from source
Insert operator at intermediate 
timeslice
Remove time-dependence by 
dividing out with two-point 
correlators:

C3(t, ⌧, ~p, ~q)

C2(⌧, ~p)
0⌧⌧⌧t
�! hN(p0)|O(q)|N(p)i

LQCD matrix elements

t = t
t = 0 t = ⌧

time



Leading twist gluon parton distribution Δ(x,Q2)  
[Jaffe & Manohar 1989]

Unambiguously gluonic: no analogous quark PDF at twist-2

Double helicity flip: non-vanishing in  
forward limit for targets with spin≥1

Experimentally measurable in unpolarised  
electron DIS on polarised target

Nitrogen target: JLab LoI 2015

Polarised nuclei at EIC 

Gluon transversity

�(x,Q2) = A+�,�+
Double Helicity Flip Gluon Structure Function: �(x,Q2)

Double helicity flip amplitude:

Photon helicity
Target helicity
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Leading twist gluon parton distribution Δ(x,Q2)  
[Jaffe & Manohar 1989]

Unambiguously gluonic: no analogous quark PDF at twist-2

Double helicity flip: non-vanishing in  
forward limit for targets with spin≥1

Experimentally measurable in unpolarised  
electron DIS on polarised target

Nitrogen target: JLab LoI 2015

Polarised nuclei at EIC 

Gluon transversity

~s

~k

~k0
�

This expression is much simplified in the Bjorken limit:

lim
Q2!1

d�

dx dy d�
=

e
4
ME

4⇡2Q4


xy

2
F1(x,Q

2) + (1� y)F2(x,Q
2)� x(1� y)

2
�(x,Q2) cos 2�

�
,

(6)
with higher twist terms and vanishing kinematic corrections ignored. Here � is the angle
between the scattering plane and the target spin orientation. If the target is polarized
in the opposite direction, the same cross section is obtained, so that the e↵ect is not
sensitive to the polarization of the target, but rather the alignment.

A partonic interpretation of �(x,Q2) can be defined for a target in the infinite mo-
mentum frame with its spin in the x̂ direction, perpendicular to momentum. For the
probability of finding a gluon with momentum fraction x and linearly polarized in the
x̂,ŷ direction gx̂,ŷ(x,Q2), we have

�(x,Q2) =
↵S(Q2)

2⇡
TrQx

2

Z 1

x

dy

y3

�
gx̂(x,Q

2)� gŷ(x,Q
2)
�

(7)

for quark charge matrix Q = diag(2/3,�1/3,�1/3).
Sather and Schmidt [4] outline the scaling behavior of �(x,Q2), and calculate the

size of its first moment in the bag model for the spin-3⁄2 particle, �++:

Z 1

0
dx x�(x,Q2) = �0.012↵s(Q

2). (8)

�(x,Q2) may prove to be even smaller for a spin-1, nuclear target. Further lattice QCD
exploration of heavy mesons should shed light on the moments of � we might encounter
in light nuclear targets.

2. Experiment

Our investigation into the prospects of a measurement of �(x,Q2) remains prelimi-
nary, however several key requirements have already introduced challenging experimental
constraints, particularly in the choice of target. The need for a transversely polarized
target brings complications, but successful experiments at JLab and SLAC show that
the JLab/UVa solid polarized target presents a dependable solution [5]. The fact that
we search for truly nuclear e↵ects leads us toward heavier nuclei. Nitrogen and lithium
o↵er promising target candidates, as they may be polarized in commonly used 14NH3

and 6LiH, albeit at lower absolute polarization compared to the protons themselves.

2.1. Method

For a spin–1 target polarized at angle ✓m from the z-axis and electron incident from
�z, we can express the di↵erential cross section for the target spin in the m̂ direction
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4

Measure azimuthal variation 



Double helicity flip distribution Δ(x,Q2)

Hadrons: Gluonic Transversity (parton model interpretation) 
 
 
 
              : probability of finding a gluon with momentum fraction    linearly 
polarised in        direction in a target polarised in    direction

Nuclei: Exotic Glue
gluons not associated  
with individual nucleons  
in nucleus

Gluon transversity

‘Exotic’ Glue in the Nucleus
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‘Exotic’ Glue in the Nucleus

‘Exotic’ Glue
Contributions to gluon

observables that are not from

nucleon degrees of freedom.

Exotic glue operator:

operator in nucleon = 0

operator in nucleus 6= 0
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hp|O|pi = 0, hN,Z|O|N,Zi 6= 0

hp|O|pi = 0, hN,Z|O|N,Zi 6= 0

gx̂,ŷ(y,Q
2)

x̂, ŷ x̂
y

�(x,Q2) = �↵s(Q2)

2⇡
TrQ2x2

Z 1

x

dy

y3
⇥
gx̂(y,Q

2)� gŷ(y,Q
2)
⇤



Moments of distribution

Extraction of A2

We calculate on the lattice:
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factors of m and p

Extraction of A2

We calculate on the lattice:
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factors of m and p

Moments of Δ(x,Q2) are calculable in lattice QCD

Determined by matrix elements of local gluonic operators 

Gluon transversity

Double Helicity Flip Gluon Structure Function: �(x,Q2)

Operator Product Expansion to relate to matrix elements of operator

Optical theorem, dispersion relation for hadronic forward scatt. amplitude,
analytic continuation give moments:

Unpolarized scattering: symmetric piece of hadronic tensor Wµ⌫ , ! even n
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Double Helicity Flip Gluon Structure Function: �(x,Q2)

Operator Product Expansion to relate to matrix elements of operator

Optical theorem, dispersion relation for hadronic forward scatt. amplitude,
analytic continuation give moments:

Unpolarized scattering: symmetric piece of hadronic tensor Wµ⌫ , ! even n
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where Double Helicity Flip Gluon Structure Function: �(x,Q2)

Dispersion relation for helicity flip part of Tµ⌫ (previous slide) and analytic
continuation give moments:

Unpolarized scattering: symmetric piece of hadronic tensor Wµ⌫ , ! even n

Phiala Shanahan (MIT) Exotic Glue in the Nucleus May 5, 2016 14 / 33

Symmetrise in                   , trace subtract in all free indices

Double Helicity Flip Gluon Structure Function: �(x,Q2)

Operator Product Expansion to relate to matrix elements of operator

Optical theorem, dispersion relation for hadronic forward scatt. amplitude,
analytic continuation give moments:

Unpolarized scattering: symmetric piece of hadronic tensor Wµ⌫ , ! even n
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where
Symmetrise in                   , trace subtract in all free indicesGluon field strength tensor Polarisation vector (spin-1)

Calculating lightcone distributions is challenging in Euclidean space



Discrete lattice: rotational symmetry           hypercubic symmetry
Take linear combinations of operators that transform irreducibly 
under hypercubic group

 
Calculate ratio for

All source-sink polarisation combinations (j,k)
Boost momenta up to (1,1,1)
All operators in each hypercubic irrep.

Gluon transversity

0 t

0 𝜏 t

C3(t, ⌧)

C2(t)
/ A2, 0 ⌧ ⌧ ⌧ t

sink time

operator  
insertion timeC3(t, ⌧)

C2(t)
/ A2, 0 ⌧ ⌧ ⌧ t

Matrix  
element

5

Rank Operator Symmetry Dimension

n+ 2 G
(E)
µµ1

 !
D

(E)
µ3 . . .

 !
D

(E)
µn G

(E)
⌫µ2 ⇢ ⌦

n+2
⌧
(4)
1 n+ 2

n G
(E)
µ1↵
 !
D

(E)
µ2 . . .

 !
D

(E)
µn�1G

(E)
µn↵ ⌦

n
⌧
(4)
1 n+ 2

n ✏↵��µ1G
(E)
↵�

 !
D

(E)
µ2 . . .

 !
D

(E)
µn�1G

(E)
µn� ⌧

(4)
4 ⌦

✓
⌦

n�1
⌧
(4)
1

◆
n+ 2

n  
(E)
�µ1�5

 !
D

(E)
µ2 . . .

 !
D

(E)
µn  

(E)
⌧
(4)
4 ⌦

✓
⌦

n�1
⌧
(4)
1

◆
n+ 2

n  
(E)
�µ1

 !
D

(E)
µ2 . . .

 !
D

(E)
µn  

(E)
⌦
n
⌧
(4)
1 n+ 2

n  
(E)
�µ1µ2

 !
D

(E)
µ3 . . .

 !
D

(E)
µn  

(E)
⇢ ⌦

n
⌧
(4)
1 n+ 1

TABLE II. Dimensions and symmetry properties under H(4) of operators that may mix with O
(E)
µ⌫µ1...µn . The symbol ⇢

indicates that the operator transforms as a subset of the symmetry group shown.

Rank ⌦
m
⌧
(4)
1 ⌧

(4)
4 ⌦

✓
⌦

m�1
⌧
(4)
1

◆

2 ⌧
(1)
1 , ⌧ (3)1 , ⌧ (6)1 , ⌧ (6)3 ⌧

(1)
4 , ⌧ (3)4 , ⌧ (6)1 , ⌧ (6)4

3 ⌧
(4)
2 , ⌧ (4)4 , ⌧ (8)1 , ⌧ (8)2 ⌧

(4)
3 , ⌧ (4)4 , ⌧ (8)2 , ⌧ (8)1

4 ⌧
(1)
2 , ⌧ (1)4 , ⌧ (2)1 , ⌧ (2)2 , ⌧ (3)2 , ⌧

(1)
3 , ⌧ (1)1 , ⌧ (2)2 , ⌧ (2)1 , ⌧ (3)3

⌧
(3)
3 , ⌧ (3)4 , ⌧ (6)2 , ⌧ (6)4 ⌧

(3)
2 , ⌧ (3)1 , ⌧ (6)2 , ⌧ (6)3

TABLE III. Irreducible representations which appear for the first time at each rank m for the towers of operators in Table II.

energy of the state, and

~e± = ⌥
m
p

2
(0, 1,±i), (23)

~e0 = m(1, 0, 0). (24)

The Euclidean polarisations needed for Eqs. (21) and (20)
are

✏(E)
i

(~p,�) = ✏i(~p,�). (25)

To construct the three-point correlators correspond-
ing to the insertion of the gluonic operator, the two
point functions above were correlated configuration-by-
configuration, and source-location–by–source-location,
with the gluonic operator. The three-point correlators
for a given operator O = O

latt.
m,n

have the form

C3pt
jk

(t, ⌧, ~p) =
X

~x

X

~y

ei~p·~xh⌘j(t, ~p) O(⌧, ~y) ⌘†
k
(0,~0)i

=Z�e
�Et

X

��0

✏(E)
j

(~p,�)✏(E)⇤
k

(~p,�0)h~p,�|O|~p,�0
i

+ . . . (26)

if 0 ⌧ ⌧ ⌧ t ⌧ T (where T denotes the time extent of
the lattice). If we instead have 0 ⌧ t ⌧ ⌧ ⌧ T , t is
replaced by (T � t) in the rightmost form of the above
expression and there is an additional multiplicative factor
of (�1)n4 where n4 is the number of temporal indices
in the operator O. In constructing C3pt, various levels
of Wilson flow [22] or HYP smearing [23] were applied

to the links in the gluon operator. This was shown in
Refs. [11, 13] to significantly improve the signal-to-noise
ratio for a di↵erent gluon operator calculation.

Using Eq. (20) and Eq. (26) we construct the ratio

Rjk(t, ⌧, ~p) =
C3pt

jk
(t, ⌧, ~p) + C3pt

jk
(T � t, T � ⌧, ~p)

C2pt
jk

(t, ~p)
(27)

for {t, ⌧} < T/2. Other choices for the ratio, with dif-
ferent combinations of the two-point function in the de-
nominator (e.g., spin-averaged) were also considered, and
give consistent results. This ratio may still depend on t
and ⌧ due to contributions from higher states neglected
in the derivation of Eq. (26). Note that the two point cor-
relator in the denominator has reached its ground state
after t = 8.

To determine the dependence of the ratio in Eq. (27) on
the reduced matrix element A2, we apply Eq. (10) to the
Minkowski-space versions of the Euclidean-space vectors
in Appendix A. The Minkowski operators are determined
by noting that

G(E)
ij

= Gij if i, j 2 {1, 2, 3}, (28)

G(E)
4j = (�i)G0j , (29)

and so

Om,n ⇠ (�i)n4Oµ⌫µ1µ2 , (30)

where n4 is the number of temporal indices on the left-
hand side, and temporal indices labelled ‘4’ in Euclidean

=



Gluon transversity
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LQCD calculation
UNRENORMALISED reduced matrix element: � meson
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Different Irreps.

Different basis vectors

Boost of � (not mtm transfer)

W. Detmold, PES, PRD 94 (2016), 014507



Gluon radii

MIT Bag Model

gluon radius > charge radius

Constituent 
Quark Model

LQCD with  
heavy quarks

gluon radius ~ charge radius

gluon radius < charge radius

How does the gluon radius of a proton compare to 
the quark/charge radius?1

Charge radius:  
slope of electric form factor with 
respect to momentum transfer

Gluon radius:  
slope of gluon form factor with 
respect to momentum transfer



Off-forward matrix elements (momentum transfer through operator)

Moments of Δ(x,Q2) related to many generalised form factors  
 
 

Gluon radii

3

The transversity GFFs are defined through
⌧
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����S
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where the polarisation vectors E and the momenta P and � are as defined above. Here, ‘S’ denotes symmetrisation in
the indices µi (the pairs {µ,µ1} and {⌫,µ2} are antisymmetric), symmetrisation of µ and ⌫, and trace-subtraction in
all free indices. The construction of this decomposition and that of Eq. (7) follows from applying discrete symmetries

and demanding the correct Lorentz structure. Only A
(n)
1,0 (�

2) contributes to forward-limit gluon transversity matrix
elements.

III. LATTICE QCD CALCULATION

In this work, a single ensemble of isotropic gauge-field
configurations is used to determine the matrix elements
discussed above at lowest n. The solutions of the sys-
tems of equations generated by various choices of polar-
isations and momenta in Eqs. (7) and (8) allow subsets
of the GFFs to be extracted, as will be discussed in de-
tail below. Simulations are performed with Nf = 2 + 1
flavours of dynamical quarks, with quark masses chosen
such that2 m⇡ ⇠ 450(5) MeV and m� ⇠ 1040(3) MeV.
A clover-improved quark action [7] and Lüscher-Weisz
gauge action [8] are used, with the clover coe�cient set
equal to its tree-level tadpole-improved value. The lat-
tices have dimensions L

3
⇥ T = 243 ⇥ 64, with lattice

spacing a = 0.1167(16) fm [9]. Details of this ensemble

2 Throughout this work, the � meson is assumed to have a flavour
content that is purely ss and annihilation contributions are ig-
nored in two and three-point correlation functions. Such terms
are suppressed by the Zweig rule.

are given in Table I [10].

A. Lattice operator construction

The lowest-n operators of the towers given in Eqs. (1)
and (3) are considered here. Symmetrised and trace-
subtracted, the Minkowski-space gluonic transversity op-
erator for n = 2 (Eq. (3)) does not mix with quark-
bilinear operators of the same or lower dimension under
renormalisation. The spin-independent gluonic operator
with n = 0 (Eq. (1)), however, mixes with the flavour

singlet quark operator
P

f={u,d,s} S
h
 f�µ

 !
D⌫ f

i
, as dis-

cussed in more detail below. Moreover, the discrete sym-
metries of a hypercubic lattice reduce the Lorentz group
to the hypercubic group H(4), creating the possibility of
further mixing. Lattice operators with the appropriate
continuum behaviour that do not have additional mix-
ing with lower or same-dimensional operators were con-
structed, for the cases considered here, in Refs. [11] and
[12].
For the gluon transversity operator in Eq. (3), oper-
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with n = 0 (Eq. (1)), however, mixes with the flavour

singlet quark operator
P

f={u,d,s} S
h
 f�µ

 !
D⌫ f

i
, as dis-
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metries of a hypercubic lattice reduce the Lorentz group
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continuum behaviour that do not have additional mix-
ing with lower or same-dimensional operators were con-
structed, for the cases considered here, in Refs. [11] and
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TABLE II. Dimensions and symmetry properties under H(4) of operators that may mix with O
(E)
µ⌫µ1...µn . The symbol ⇢

indicates that the operator transforms as a subset of the symmetry group shown.

Rank ⌦
m
⌧
(4)
1 ⌧

(4)
4 ⌦

✓
⌦

m�1
⌧
(4)
1

◆

2 ⌧
(1)
1 , ⌧ (3)1 , ⌧ (6)1 , ⌧ (6)3 ⌧

(1)
4 , ⌧ (3)4 , ⌧ (6)1 , ⌧ (6)4

3 ⌧
(4)
2 , ⌧ (4)4 , ⌧ (8)1 , ⌧ (8)2 ⌧

(4)
3 , ⌧ (4)4 , ⌧ (8)2 , ⌧ (8)1

4 ⌧
(1)
2 , ⌧ (1)4 , ⌧ (2)1 , ⌧ (2)2 , ⌧ (3)2 , ⌧

(1)
3 , ⌧ (1)1 , ⌧ (2)2 , ⌧ (2)1 , ⌧ (3)3

⌧
(3)
3 , ⌧ (3)4 , ⌧ (6)2 , ⌧ (6)4 ⌧

(3)
2 , ⌧ (3)1 , ⌧ (6)2 , ⌧ (6)3

TABLE III. Irreducible representations which appear for the first time at each rank m for the towers of operators in Table II.

energy of the state, and

~e± = ⌥
m
p

2
(0, 1,±i), (23)

~e0 = m(1, 0, 0). (24)

The Euclidean polarisations needed for Eqs. (21) and (20)
are

✏(E)
i

(~p,�) = ✏i(~p,�). (25)

To construct the three-point correlators correspond-
ing to the insertion of the gluonic operator, the two
point functions above were correlated configuration-by-
configuration, and source-location–by–source-location,
with the gluonic operator. The three-point correlators
for a given operator O = O

latt.
m,n

have the form

C3pt
jk

(t, ⌧, ~p) =
X

~x

X

~y

ei~p·~xh⌘j(t, ~p) O(⌧, ~y) ⌘†
k
(0,~0)i

=Z�e
�Et

X

��0

✏(E)
j

(~p,�)✏(E)⇤
k

(~p,�0)h~p,�|O|~p,�0
i

+ . . . (26)

if 0 ⌧ ⌧ ⌧ t ⌧ T (where T denotes the time extent of
the lattice). If we instead have 0 ⌧ t ⌧ ⌧ ⌧ T , t is
replaced by (T � t) in the rightmost form of the above
expression and there is an additional multiplicative factor
of (�1)n4 where n4 is the number of temporal indices
in the operator O. In constructing C3pt, various levels
of Wilson flow [22] or HYP smearing [23] were applied

to the links in the gluon operator. This was shown in
Refs. [11, 13] to significantly improve the signal-to-noise
ratio for a di↵erent gluon operator calculation.

Using Eq. (20) and Eq. (26) we construct the ratio

Rjk(t, ⌧, ~p) =
C3pt

jk
(t, ⌧, ~p) + C3pt

jk
(T � t, T � ⌧, ~p)

C2pt
jk

(t, ~p)
(27)

for {t, ⌧} < T/2. Other choices for the ratio, with dif-
ferent combinations of the two-point function in the de-
nominator (e.g., spin-averaged) were also considered, and
give consistent results. This ratio may still depend on t
and ⌧ due to contributions from higher states neglected
in the derivation of Eq. (26). Note that the two point cor-
relator in the denominator has reached its ground state
after t = 8.

To determine the dependence of the ratio in Eq. (27) on
the reduced matrix element A2, we apply Eq. (10) to the
Minkowski-space versions of the Euclidean-space vectors
in Appendix A. The Minkowski operators are determined
by noting that

G(E)
ij

= Gij if i, j 2 {1, 2, 3}, (28)

G(E)
4j = (�i)G0j , (29)

and so

Om,n ⇠ (�i)n4Oµ⌫µ1µ2 , (30)

where n4 is the number of temporal indices on the left-
hand side, and temporal indices labelled ‘4’ in Euclidean

=
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where the numbers and uncertainties on the right hand side of the equation come from the plateau fits to averaged
ratios obtained as described in the main text. The ordering of the rows is as in Table II.

Appendix D: Direct solution of form factor

decomposition for electromagnetic current

Since only three form factors contribute to matrix el-
ements of the electromagnetic current, a direct solution
of the constraint equations relating ratios of three-point
and two-point functions to the form factors is straight-
forward [18, 19]. This extraction is performed as a check
on the more general method discussed in Section III.

For each momentum transfer, �2, three ratios of two-
point and three-point functions are required to extract
the form factors at that momentum. At zero momentum
transfer, only the G1 form factor can be determined. In
terms of the ratios

R
i
jk(~�) = Rjk(~p = ~�, ~p

0 = ~0, t, ⌧, J i) (D1)

for the currents J
i =  ̄�

i
 , where Rjk(~p, ~p 0

, t, ⌧,O) is

defined in Eq. (14) and dependence on the current and
sink times is suppressed, the generic form of the solution
for the FFs can be expressed as

GX(�2) = MX

X

f=a,b,c

NX,fRX,f . (D2)

Here X = C,M,Q labels the Sachs form factors, which
are related to the basis used in Eq. (21) by

GQ(�
2) = G1(�

2)�G2(�
2) + (1 + ⌘)G3(Q

2),

GM (�2) = G2(�
2), (D3)

GC(�
2) = G1(�

2) +
2

3
⌘GQ(�

2) .

One choice of the combinations NX,f for each momen-
tum used, given that only zero sink momentum sequen-
tial propagators were computed, is given in Table III.
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Some GFFs suppressed by orders of magnitude
Some GFFs related by symmetries at some momenta
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where the numbers and uncertainties on the right hand side of the equation come from the plateau fits to averaged
ratios obtained as described in the main text. The ordering of the rows is as in Table II.

Appendix D: Direct solution of form factor

decomposition for electromagnetic current

Since only three form factors contribute to matrix el-
ements of the electromagnetic current, a direct solution
of the constraint equations relating ratios of three-point
and two-point functions to the form factors is straight-
forward [18, 19]. This extraction is performed as a check
on the more general method discussed in Section III.

For each momentum transfer, �2, three ratios of two-
point and three-point functions are required to extract
the form factors at that momentum. At zero momentum
transfer, only the G1 form factor can be determined. In
terms of the ratios

R
i
jk(~�) = Rjk(~p = ~�, ~p

0 = ~0, t, ⌧, J i) (D1)

for the currents J
i =  ̄�

i
 , where Rjk(~p, ~p 0

, t, ⌧,O) is

defined in Eq. (14) and dependence on the current and
sink times is suppressed, the generic form of the solution
for the FFs can be expressed as

GX(�2) = MX

X

f=a,b,c

NX,fRX,f . (D2)

Here X = C,M,Q labels the Sachs form factors, which
are related to the basis used in Eq. (21) by

GQ(�
2) = G1(�

2)�G2(�
2) + (1 + ⌘)G3(Q

2),

GM (�2) = G2(�
2), (D3)

GC(�
2) = G1(�

2) +
2

3
⌘GQ(�

2) .

One choice of the combinations NX,f for each momen-
tum used, given that only zero sink momentum sequen-
tial propagators were computed, is given in Table III.
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Gluon distributions
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to measure the gluon transversity distribution in light nuclei, for which a letter of intent
has been submitted [5]. Recently, we have calculated the gluon momentum fraction in
the nucleon and of light nuclei at unphysical values of the quark masses corresponding
to m⇡ ⇠ 800 MeV and m⇡ ⇠ 450 MeV, and extracted the first information about the
forward-limit gluon transversity of the spin-1 deuteron [6]. With a 2017-2018 allocation,
we are extending these calculations to the generalised gluon distributions of the nucleon,
at a single unphysical value of the pion mass, m⇡ ⇠ 450 MeV. Here we propose to extend
these calculations to a close-to-physical value of the pion mass, m⇡ ⇠ 170 MeV, to allow
a controlled chiral extrapolation and set the first benchmarks for measurements of gluon
distributions at the EIC.

The simplest purely gluonic quantity in a nucleon is the o↵-forward transversity GPD [7,
8], and this is the main focus of this work. Additionally, the spin-independent GPD (whose
forward limit defines the gluon momentum fraction in the nucleon), will be determined, al-
though this distribution su↵ers from mixing with quark distributions at the 10% level, which
will not be determined here (but will be targeted in a future higher-precision study). All of
the machinery of the proposed computation is similar to that in the 2017-2018 investigation
at m⇡ ⇠ 450 MeV, which is detailed below. New propagators are required, and are the
dominant cost of this proposal. Using the proposed high-statistics propagator calculation,
investigations of many other interesting aspects of the gluon structure of nucleons will be
possible, including first studies of the gluon TMDs and the x-dependence of gluon PDFs
using the Ji method [9].

II. PREVIOUS STUDY: m⇡ ⇠450 MEV

We were awarded a 2017-2018 USQCD allocation to perform a first calculation of the
gluon generalised form factors of the nucleon. While analysis of the generated data is still
underway, we show in this Section some preliminary results and discuss the outcomes of that
investigation and its implications for the proposed work at significantly lighter quark masses.
The calculations closely follow those detailed in Ref. [4] which describes our previous study
of the lowest moment of the gluon transversity PDF in a � meson.

Through the operator product expansion, the towers of Mellin moments of GPDs are
related to matrix elements of towers of local twist-two operators. These matrix elements,
in turn, are parametrised in terms of the GFFs which are the focus of this work. Three
towers of moments of twist-2 gluon GPDs encode the spin-independent, spin-dependent and
transversity gluon distributions. They are related to matrix elements of the local operators:

Oµ⌫µ1...µn = S

h
Gµ↵
 !
D µ1 . . .

 !
D µnG

↵
⌫

i
, (1)

Õµ⌫µ1...µn = S

h
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 !
D µ1 . . .
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D µnG

↵
⌫

i
, (2)

Oµ⌫µ1...µn = S

h
Gµµ1

 !
D µ3 . . .

 !
D µnG⌫µ2

i
, (3)

respectively, where Gµ⌫ denotes the gluon field strength tensor, and the dual field-strength
tensor is represented as G̃µ⌫ = 1

2✏µ⌫↵�G
↵�. ‘S’ denotes symmetrisation and trace-subtraction

in all free indices for Eqs. 1 and 2, and symmetrisation and trace-subtraction in the µi

for Eq. 3. The focus of the present study is the lowest (n = 2) operator in each of the
spin-independent and transversity towers. For a spin-12 nucleon, the related twist-two gluon
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Matrix elements of the spin-independent gluon structure function
“Gravitational form factors” for n=0
Gluon momentum fraction in forward limit
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Spin-indep. gluon GFFs
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lated to matrix elements of the operators
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respectively, where the gluon field strength tensor is Gµ⌫ ,
the dual field-strength tensor is G̃µ⌫ = 1
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⌘
. ‘S’ denotes symmetrisation and trace-

subtraction in all free indices for Eqs. (1) and (2), and
symmetrisation in the µi and and trace-subtraction in
all indices for Eq. (3). The matrix elements of these
operators in spin-1 states, at lowest n, are the focus of
this work.

The o↵-forward matrix elements of the twist-2 oper-
ators defined above are described by GFFs. For spin-1
particles, there are 7(bn/2c+ 1) spin-independent gluon

GFFs for the nth operator in the tower. For the transver-
sity operator, there are 8(b(n � 2)/2c + 1) gluon GFFs.
The spin-dependent gluon GFFs, which vanish at lowest-
n through operator symmetries, are not considered nu-
merically in this work but are enumerated in Appendix B.
With the polarisation vectors of massive spin-1 particles
defined in Minkowski space as

E
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~e0 = (1, 0, 0), (6)

the spin-independent gluon GFFs are defined1 [6] through
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µ �⌫

�
�µ1 . . .�µmPµm+1 . . . Pµn

⇤

+
B

(n+2)
6,m (�2)

M2
S
⇥
(E · P )(E0⇤

· P )PµP⌫�µ1 . . .�µmPµm+1 . . . Pµn

⇤

+
B

(n+2)
7,m (�2)

M2
S
⇥
(E · P )(E0⇤

· P )�µ�⌫�µ1 . . .�µmPµm+1 . . . Pµn

⇤
)
. (7)

Here, P = (p + p
0)/2 is the average momentum and the momentum transfer is defined as � = p

0
� p. ‘S’ denotes

symmetrisation and trace-subtraction in all free indices. Of these GFFs, only B
(n)
1,0 (�

2) and B
(n)
2,0 (�

2) contribute to
forward-limit matrix elements. The renormalisation scheme and scale-dependence of the GFFs is suppressed here.

1 This choice of basis is slightly di↵erent from that in Ref. [6],
where the decomposition also includes a trace term.



“Gravitational form factors”

Similarly complicated decomposition 
Three GFFs can be resolved  
for all momenta 
 
 
 
 
 
 
 
 
 
  Squared momentum transfer

Squared momentum transfer

Spin-indep. gluon GFFs
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Squared momentum transfer

GFF decomposition has precisely  
the same structure as in the  
spin-independent gluon case 
 
 
 
 
 
 
 
 
 
  Squared momentum transfer

Spin-indep. quark GFFs
Detmold, Pefkou, Shanahan, PRD 95 (2017), 114515

Radius: slope at zero  
momentum transfer
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Squared momentum transfer

Gluon vs quark radius depends 
strongly on which aspect of 
structure is being probed 
 
 
 
 
 
 
 
 
 
  Squared momentum transfer

Spin-indep. quark GFFs
Detmold, Pefkou, Shanahan, PRD 95 (2017), 114515

Radii: slopes at zero  
momentum transfer
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Nucleon spin-indep. gluon GFFs

Nucleon, m𝞹 ~450 MeV

Three spin-independent 
generalised form factors, 
one can be resolved from 
zero at present statistics
 
Dipole-like fall-off vs

Renormalisation + 
comparison with quark  
GFFs in progress

Squared momentum transfer

|�2|

Radius: slope at zero  
momentum transfer
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Ratio of structure function F2 per 
nucleon for iron and deuterium 

European Muon 
Collaboration (1983):  
“EMC effect”

Modification of per-nucleon 
cross section of nucleons  
bound in nuclei

Gluon analogue?

Gluon structure of nuclei

How does the gluon 
structure of a nucleon 
change in a nucleus?

2A
F2(x,Q

2) =
X

q=u,d,s...

x e2q [q(x,Q
2) + q(x,Q2)]

Longitudinal momentum fraction

Number density of  
partons of flavour q



Calculations possible for A<5

Nuclei on the lattice: HARD 

Noise:  
Statistical uncertainty grows 
exponentially with number 
of nucleons

Complexity:  
Number of contractions 
grows factorially

Nuclear physics from LQCD

time

COST



Deuteron gluon momentum fraction
Ratio    matrix element 
forC3(t, ⌧)

C2(t)
/ A2, 0 ⌧ ⌧ ⌧ t

Look for nuclear (EMC-type) 
effects in the first moments 
of the spin-independent 
gluon structure function

Nuclear glue, m𝞹 ~450 MeV

NPLQCD Collaboration PRD96 094512 (2017)

Doubly challenging

Nuclear matrix 
element
Gluon observable 
(suffer from poor 
signal-to-noise)
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Gluon momentum fraction

Matrix elements of the spin-independent gluon operator in 
nucleon and light nuclei
Present statistics: can’t distinguish from no-EMC effect scenario
Small additional uncertainty from mixing with quark operators

NPLQCD Collaboration PRD96 094512 (2017)

m𝞹 ~450 MeV m𝞹 ~800 MeV

Ratio of gluon momentum fraction in nucleus to nucleon
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Gluon structure of nuclei

      Exotic Glue

Contributions to nuclear 
structure from gluons not 
associated with individual 
nucleons in nucleus  
 
Exotic glue operator:

‘Exotic’ Glue in the Nucleus

Phiala Shanahan (MIT) Exotic Glue in the Nucleus September 13, 2016 3 / 15

‘Exotic’ Glue in the Nucleus

‘Exotic’ Glue
Contributions to gluon

observables that are not from

nucleon degrees of freedom.

Exotic glue operator:

operator in nucleon = 0

operator in nucleus 6= 0

Phiala Shanahan (MIT) Exotic Glue in the Nucleus September 13, 2016 3 / 15

hp|O|pi = 0, hN,Z|O|N,Zi 6= 0

hp|O|pi = 0, hN,Z|O|N,Zi 6= 0

Jaffe and Manohar, “Nuclear Gluonometry”  
Phys. Lett. B223 (1989) 218

2B

nucleon
nucleus



Non-nucleonic glue in deuteron

PRELIMINARY

First moment of gluon transversity 
distribution in the deuteron,  
m𝞹 ~800 MeV

First evidence for non-nucleonic gluon 
contributions to nuclear structure 

Hypothesis of no signal ruled out to 
better than one part in 107

Magnitude relative to momentum 
fraction as expected from large-Nc

NPLQCD Collaboration PRD96 094512 (2017)
Ratio of 3pt and 2pt functions

Ratio    matrix element 
for

C3(t, ⌧)

C2(t)
/ A2, 0 ⌧ ⌧ ⌧ t

C3(t, ⌧)

C2(t)
/ A2, 0 ⌧ ⌧ ⌧ t
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Electron-Ion collider will dramatically alter our knowledge of the 
gluonic structure of hadrons and nuclei

Work towards a complete 3D picture of parton structure 
(moments, x-dependence of PDFs, GPDs, TMDs)

Δ(x,Q2) has an interesting role
Purely gluonic
Non-nucleonic: directly probe nuclear effects

Compare quark and gluon distributions in hadrons and nuclei 

Lattice QCD calculations in hadrons and light nuclei will complement 
and extend understanding of fundamental structure of nature

Gluon structure from LQCD


